£ ASPLOS 2023

KIT: Testing OS-Level Virtualization
for Functional Interference Bugs

Congyu Liu, Sishual Gong, Pedro Fonseca

“urdue University

27 PORDUE 58 sysTems

Containers are widely deployed

W

avvs A 3 c)

In 2022,
/9% of organizations use containers in production,
with 44% using them for most or all production applications.

Containers efficiently and securely share the same kernel

Container Container

Container engine

Kernel

Kernel is responsible for isolating containers

Container Container

))
-------------- = = = E -
) 3
S

A 3
N
~§
L
D &b Y-

FS Net

Kernel isolates resources for containers

This ‘wall’ has holes

Container Container

Functional interference bug:
A container affects other containers’ system call results (functionality)

Functional interference bugs are harmful

Integrity violation (data corruption) or cause denial of service

Functional interference bugs are harmful

Leak information

A functional interference bug in Linux namespaces

CVE-2021-38209

Container Container
Net sysctl Net syscitl
Kernel

Network sysctls should be isolated by namespaces

A functional interference bug in Linux namespaces

CVE-2021-38209

f o f £,
sysctl.net. d = open(czmb d = open(du
nf conntrack max write(fd, “1007) read(fd)

-irewall connection
tracking table I|m|t

Net sysctl ‘ l Net syscitl

Kernel

A container can easily affect firewall of other containers

A functional interference bug in Linux namespaces

CVE-2021-38209

fd = open(“*) fd = open(“*

write(fd, “1007) read(fd)

= « Nf_conntrack_max ;

Net sysctl ‘ l Net syscitl

Kernel

Root cause: share the same global variable

Functional interference bugs are usually semantic bugs

CVE-2021-38209

fd = open(&:ﬂ*) I fd = open(&:ﬁ*)

Semantic bug write(fd, “100") read (fo)
Do not cause crashes Net syscil ‘ . Net syscitl

. Kernel
Do not involve memory errors

or data races

Challenge: detect semantic functional interference bugs

Sanitizers

Semantic bug Crash Bug missed

‘ checker

-$-3-1

False positives

Static analysis

Goal: check system call results for correct isolation

/)
®

Q Detect semantic bug

Q Simplify analysis

Observation: affected results usually change

fd = open(“*) fd = open(“*) fd = open(“*)

write(fd, “100”) read(fd) read(fd)

Trace Trace
collection collection

read (4, “100”) = 3 read (4, “65536"7) =

Approach: compare system call trace across executions

Prog A Prog B Prog B

Trace Trace
collection collection

System call trace System call trace

Exception I: Non-deterministic system call results

Prog A Prog B Prog B

Trace Trace

collection ﬁ collection
® | eg ®

Non-determinism can also cause traces to be different and should be filtered

Filter non-deterministic system call results

Trace text

Non-determinism can be identified by running multiple times

Filter non-deterministic system call results

Trace text Trace analysis

—: Different!
I No need to report it

Exception ll: non-isolated kernel resources

Prog A Prog B

Some resources are
deliberately not isolated
(€.9., some files in /proc) \ Non-isolated resources

System calls on non-isolated kernel resources can interfere

Expected behavior, not bugs

Filter system call results on non-isolated kernel resources

{03
N Limit accesses to
non-isolated resources

1. Container configuration

O=—"
O=—"|}|! . .
= D-‘ Progressively refine the
' specification to check the
2 |solated resource Isolation on given resources

specification

Previous: detect functional interference bugs

Prog A Prog B Prog B

Kernel Kernel

4 @ I
]]

How to detect functional interference bugs?

Next: trigger functional interference bugs

Prog A Prog B Prog B

Kernel Kernel

4 @ I
]]

How to detect functional interference bugs? How to generate effective test cases?

Next: trigger functional interference bugs

Prog A Prog B Prog B

Kernel Kernel

4 @ I
]]

How to detect functional interference bugs? How to generate effective test cases?

What makes a test case effective?

Net syscitl Net syscitl

Functional interference bugs require kernel data flows

Generates test cases with inter-container kernel data flows

Prog A
Input: - | Output:
Programs Predict inter-container kernel data flows Program pairs

How?

Predict by analyzing kernel memory traces

Prog A
.=»., Memory
St Prog A Prog B
Kernel L=
0.‘;'
Write X | . |
~ead Y & Write X Read X
1. Profile kernel memory address 2. Predict kernel inter-container data flow

accessed from each program If two programs access same memory

Implementation

KIT is implemented in 8K LOC
We wrote a (partial) namespace specification

Support clustering similar test reports to reduce analysis effort

Evaluation: bug detection

KIT found 9 bugs in Linux kernel 5.13

Disabling network fast path, leaking network statistics, resource contention...

Evaluation: test case generation

Bugs Test cases
5 9 oM 8.66M
8
7
6 6M
5
4
3 3M
f 1.13M
0

OM
Random KIT Random KIT

KIT found 2X bugs than random while using 1/8 test cases

Evaluation: result filtering and report clustering effectiveness

Test reports
16000 15,393

12000
8000

4000
(clusters) Only 4 are false positives

808 o —

Initial Filtered Clustered

Filtering and clustering significantly reduce analysis effort

I
fd = open(&:ﬂ*) : E fd = open(&,,gﬁ)
write(fd, “100”) “+ read(fd)
i

i
BN 11 connracic max TSMNE 2

Kernel

Net syscitl Net syscil

OS-level virtualization
suffers from functional
interference bugs

»

Conclusion

Prog A Prog B Prog B

Kernel Kernel

4y @ I

KIT detects functional KIT finds new functional
interference bugs by interference bugs in Linux
analyzing syscall traces nhamespaces

o0
Eg%

KIT artifact: https://github.com/rssys/kit-artifact @I’ .
g

https://github.com/rssys/kit-artifact

