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What is process fork?

Fork creates a child process by duplicating the calling process.
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Fork gets slower as memory gets larger

253 ms @ 50 GB



A slow fork is bad
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A slow fork is bad

6

Requests keep queueing

Long latency of fork blocks applications on the critical path

handle_request()
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handle_request()

Code for snapshotting
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Setting up the whole address space is wasteful



Why is fork slow and inefficient?
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Fork copies page tables
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Fork copies page tables
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Huge pages are not a good solution

• Fewer pages mean fewer page tables to copy

• Lower the latency of fork, but suffer from:
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Increased internal fragmentation

Expensive page faults

System-wide latency spike

2MB Page



On-demand-fork

• Shares last-level page tables during fork

• Ensures microsecond-level latency for dozens of GBs of memory

• No issues of huge pages
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No cost of copying page tables for read access
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Preserving copy-on-write semantics

• The same view of the memory in the parent and child

• Traditional fork disables the write permission in last-level page tables

• Whoever writes gets a private copy of the physical page
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Preserving copy-on-write semantics

On-demand-fork disables the write permission in 3rd level tables
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On-demand page table copying
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Keeping track of shared tables

• Challenge: Need to know when to free last-level page tables
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Keeping track of shared tables

• Challenge: Need to know when to free last-level page tables

• Solution: reference counts last-level page tables
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Keeping track of shared tables

• Reference counts last-level page tables

• Count equals the number of processes that share the page table
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Keeping track of shared tables

• Reference counts last-level page tables

• Count equals the number of processes that share the page table
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On-demand copying



Keeping track of shared tables

Last-level page tables are freed after count reaches zero
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Microbenchmarks: fault handling time
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Real-world applications: SQLite test suite

The test suite runs each test case in a child process
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Conclusion

Traditional fork is slow

On-demand-fork is fast and efficient
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