
On-demand-fork: A Microsecond Fork 
for Memory-Intensive and Latency-

Sensitive Applications

Kaiyang Zhao, Sishuai Gong, Pedro Fonseca

Purdue University

1



2



Parent
Process

What is process fork?

Fork creates a child process by duplicating the calling process.

3

Parent
Process



Parent
Process

What is process fork?

Fork creates a child process by duplicating the calling process.

3

Parent
Process

Child
Process



Parent
Process

What is process fork?

Fork creates a child process by duplicating the calling process.

3

Parent
Process

Child
Process



Modern uses of fork

4

DatabasesFuzzers Serverless

Modern Uses



Modern uses of fork

4

DatabasesFuzzers Serverless

Modern Uses

(Hundreds of MBs)



Modern uses of fork

4

DatabasesFuzzers Serverless

Modern Uses

(Hundreds of MBs) (A few GBs)



Modern uses of fork

4

DatabasesFuzzers Serverless

Modern Uses

(Hundreds of MBs) (A few GBs) (A few TBs)



0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e 
(m

s)

Allocate Memory (GB)

Fork has a latency problem

5



0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e 
(m

s)

Allocate Memory (GB)

Fork has a latency problem

5

Fork gets slower as memory gets larger



0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e 
(m

s)

Allocate Memory (GB)

Fork has a latency problem

5

Fork gets slower as memory gets larger

253 ms @ 50 GB



A slow fork is bad

6

Requests keep queueing

Code for snapshotting



A slow fork is bad

6

Requests keep queueing
handle_request()

fork()

handle_request()

Code for snapshotting



A slow fork is bad

6

Requests keep queueing

Long latency of fork blocks applications on the critical path

handle_request()

fork()

handle_request()

Code for snapshotting



Fork has an efficiency problem

7



Fork has an efficiency problem

• Fork sets up the entire address space of the child process

7



Fork has an efficiency problem

• Fork sets up the entire address space of the child process

• But some applications only access a small portion of the memory in 
the child process

7



Fork has an efficiency problem

• Fork sets up the entire address space of the child process

• But some applications only access a small portion of the memory in 
the child process

• E.g., when an application is being fuzzed

7



Fork has an efficiency problem

• Fork sets up the entire address space of the child process

• But some applications only access a small portion of the memory in 
the child process

• E.g., when an application is being fuzzed

7

Setting up the whole address space is wasteful



Why is fork slow and inefficient?

8



Fork copies page tables

9

Parent Child

Shared 
Pages

Page table levels
1

2

3

4



Fork copies page tables

9

Parent Child

Shared 
Pages

Page table levels
1

2

3

4



Fork copies page tables

9

Parent Child

Shared 
Pages

Page table levels
1

2

3

4



Fork copies page tables

9

Parent Child

Shared 
Pages

Copying is prohibitively expensive for large applications

Page table levels
1

2

3

4



Huge pages are not a good solution

• Fewer pages mean fewer page tables to copy

• Lower the latency of fork, but suffer from:

10

Increased internal fragmentation

Expensive page faults

System-wide latency spike



Huge pages are not a good solution

• Fewer pages mean fewer page tables to copy

• Lower the latency of fork, but suffer from:

10

Increased internal fragmentation

Expensive page faults

System-wide latency spike

2MB Page



On-demand-fork

• Shares last-level page tables during fork

• Ensures microsecond-level latency for dozens of GBs of memory

• No issues of huge pages
11

Shared 
Pages

Parent Child



On-demand-fork

• Shares last-level page tables during fork

• Ensures microsecond-level latency for dozens of GBs of memory

• No issues of huge pages
11

Shared 
Pages

Parent Child



Fast read after fork

12

Parent Child



Fast read after fork

12

Parent Child



Fast read after fork

12

Parent Child



Fast read after fork

12

No cost of copying page tables for read access

Parent Child



Page

Preserving copy-on-write semantics

• The same view of the memory in the parent and child

• Traditional fork disables the write permission in last-level page tables

• Whoever writes gets a private copy of the physical page
13

Page

Parent ChildPage table levels
3

4



Page

Preserving copy-on-write semantics

• The same view of the memory in the parent and child

• Traditional fork disables the write permission in last-level page tables

• Whoever writes gets a private copy of the physical page
13

Page

Parent ChildPage table levels
3

4



Page

Preserving copy-on-write semantics

• The same view of the memory in the parent and child

• Traditional fork disables the write permission in last-level page tables

• Whoever writes gets a private copy of the physical page
13

Page

Parent ChildPage table levels
3

4



Preserving copy-on-write semantics

On-demand-fork disables the write permission in 3rd level tables

14

Page

Parent ChildPage table levels
3

4



Preserving copy-on-write semantics

On-demand-fork disables the write permission in 3rd level tables

14

Page

Parent ChildPage table levels
3

4



On-demand page table copying

15

• Page faults for write access only
• Increased cost for only the first write access 

Page

Parent Child



On-demand page table copying

15

• Page faults for write access only
• Increased cost for only the first write access 

Page

Parent Child



Keeping track of shared tables

• Challenge: Need to know when to free last-level page tables

16

Page

Parent Child



Keeping track of shared tables

• Challenge: Need to know when to free last-level page tables

• Solution: reference counts last-level page tables

16

Page

Parent Child



Keeping track of shared tables

• Reference counts last-level page tables

• Count equals the number of processes that share the page table

17

During system call
Count=2

Page

Parent Child



Keeping track of shared tables

• Reference counts last-level page tables

• Count equals the number of processes that share the page table

18

Count=1

Page

Parent Child

Count=1

On-demand copying



Keeping track of shared tables

Last-level page tables are freed after count reaches zero

19

Count=0

Page

Parent Child

Unmapping



0.1

0.3

1.0

4.0

16.0

64.0

256.0

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

m
s)

Allocate Memory (GB)

Fork Huge pages On-demand-fork

Microbenchmarks: system call latency

20



0.1

0.3

1.0

4.0

16.0

64.0

256.0

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

m
s)

Allocate Memory (GB)

Fork Huge pages On-demand-fork

Microbenchmarks: system call latency

20

65 times faster at 1GB



0.1

0.3

1.0

4.0

16.0

64.0

256.0

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

m
s)

Allocate Memory (GB)

Fork Huge pages On-demand-fork

Microbenchmarks: system call latency

20

65 times faster at 1GB

270 times faster at 50GB



0.1

0.3

1.0

4.0

16.0

64.0

256.0

0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
 (

m
s)

Allocate Memory (GB)

Fork Huge pages On-demand-fork

Microbenchmarks: system call latency

20

65 times faster at 1GB

270 times faster at 50GB

Faster than huge pages



Microbenchmarks: fault handling time

21

0.0023

0.1984

0.0122
0

0.1

0.2

0.3Time (ms)

Fork Huge pages On-demand-fork*

86.3X

5.3X

*: worst-case



Microbenchmarks: fault handling time

21

0.0023

0.1984

0.0122
0

0.1

0.2

0.3Time (ms)

Fork Huge pages On-demand-fork*

Worst case page fault handling time is reasonable 

86.3X

5.3X

*: worst-case



Real-world applications: SQLite test suite

The test suite runs each test case in a child process

22



Real-world applications: SQLite test suite

The test suite runs each test case in a child process

22

13.15

0.12
0

10

20

Ti
m

e
 (

m
s)

Fork Latency

Fork On-demand-fork

99% lower fork latency



Real-world applications: SQLite test suite

The test suite runs each test case in a child process

22

13.15

0.12
0

10

20

Ti
m

e
 (

m
s)

Fork Latency

Fork On-demand-fork

0.18 0.21

0

0.2

0.4

Ti
m

e
 (

m
s)

Test Case Cost

Fork On-demand-fork

99% lower fork latency Similar cost of running a test



Real-world applications: Redis

23

Redis forks on the critical path to take snapshots



Real-world applications: Redis

23

7.4

0.12
0

5

10

Ti
m

e
 (

m
s)

Fork Latency

Fork On-demand-fork

98% lower fork latency

Redis forks on the critical path to take snapshots



Real-world applications: Redis

23

7.4

0.12
0

5

10

Ti
m

e
 (

m
s)

Fork Latency

Fork On-demand-fork

16.26

5.54

0

10

20

Ti
m

e
 (

m
s)

99.99 Percentile Request Latency

Fork On-demand-fork

98% lower fork latency 65.95% lower tail request latency

Redis forks on the critical path to take snapshots



0

50

100

150

200

250

0 50 100 150 200 250 300 350

Te
st

 In
p

u
ts

 /
 s

Time Elapsed (s)
Fork On-demand-fork

Real-world applications: AFL

AFL instruments the target 
program to repeatedly fork to 
take inputs

24



0

50

100

150

200

250

0 50 100 150 200 250 300 350

Te
st

 In
p

u
ts

 /
 s

Time Elapsed (s)
Fork On-demand-fork

Real-world applications: AFL

AFL instruments the target 
program to repeatedly fork to 
take inputs

24

2.26 times higher
fuzzing throughput



Conclusion

Traditional fork is slow

On-demand-fork is fast and efficient

25

https://github.com/rssys/on-demand-fork

https://github.com/rssys/on-demand-fork


Conclusion

Traditional fork is slow

On-demand-fork is fast and efficient

25

https://github.com/rssys/on-demand-fork

270 times 
faster fork

https://github.com/rssys/on-demand-fork


Conclusion

Traditional fork is slow

On-demand-fork is fast and efficient

25

https://github.com/rssys/on-demand-fork

270 times 
faster fork

3.26 times 
fuzzing 

throughput

https://github.com/rssys/on-demand-fork


Conclusion

Traditional fork is slow

On-demand-fork is fast and efficient

25

https://github.com/rssys/on-demand-fork

270 times 
faster fork

65% lower 
Redis tail 

request latency

3.26 times 
fuzzing 

throughput

https://github.com/rssys/on-demand-fork

