A Comprehensive Study of Concurrency Bugs in the Linux Kernel

Sishuai Gong
University of North Carolina at
Chapel Hill
Chapel Hill, NC, USA

Edwin Lu
Purdue University
West Lafayette, IN, USA

Abstract

Concurrency bugs arise from unexpected orderings of concurrent
instructions and are notoriously difficult to detect and diagnose
due to their non-deterministic nature. Prior studies of concurrency
bugs in user-space applications have identified common bug char-
acteristics and informed the design of effective detection, diagnosis,
and repair techniques. In contrast, far less is known about concur-
rency bugs in operating system kernels, where low-level systems
programming and complex execution patterns introduce fundamen-
tally different concurrent execution behaviors.

This paper presents the first comprehensive study of concurrency
bugs in the Linux kernel. We analyze 200 real-world kernel concur-
rency bugs and systematically characterize their manifestation con-
ditions, root causes, discovery processes, and repair characteristics.
Our study reveals that kernel concurrency bugs differ substantially
from their user-space counterparts. For instance, 27.5% of kernel
concurrency bugs manifest only when specific interrupt events
occur, yet such bugs are often overlooked by existing bug discovery
approaches. Moreover, nearly half of the bugs occur in kernel dri-
vers, and 69.3% of them stem from concurrent device operations on
control paths such as device registration and deregistration, high-
lighting driver control logic as a critical target for concurrency bug
discovery. Overall, our findings expose key limitations in current
approaches to kernel concurrency bug detection and analysis. By
shedding light on these challenges, this work paves the way for
new operating system designs, testing tools, and verification efforts
that will make modern operating systems more reliable and secure.

ACM Reference Format:

Sishuai Gong, Chih-En Lin, Kevin Wu, Edwin Lu, and Pedro Fonseca. 2026.
A Comprehensive Study of Concurrency Bugs in the Linux Kernel . In 2026
IEEE/ACM 48th International Conference on Software Engineering (ICSE ’26),
April 12-18, 2026, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3744916.3787790

This work is licensed under a Creative Commons Attribution 4.0 International License.
ICSE °26, Rio de Janeiro, Brazil

© 2026 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2025-3/2026/04

https://doi.org/10.1145/3744916.3787790

Chih-En Lin
Purdue University
West Lafayette, IN, USA

Kevin Wu
Purdue University
West Lafayette, IN, USA

Pedro Fonseca
Purdue University
West Lafayette, IN, USA

1 Introduction

Operating system kernels rely on fine-grained concurrency to
achieve high scalability and performance. Yet exploiting concur-
rency is notoriously error-prone [60], often leading to subtle, non-
deterministic bugs that compromise system reliability and secu-
rity [56, 59]. Kernel concurrency stems from multiple, inherently dis-
tinct sources—including system calls from user-space applications,
asynchronous hardware events, and background kernel threads—
and further involves low-level synchronization primitives, shared
states, and long, highly-optimized code paths. Together, these fac-
tors make reasoning about concurrent correctness extremely diffi-
cult, leaving modern kernels susceptible to concurrency bugs.

Despite the kernel’s foundational role in system reliability, there
is a surprising lack of in-depth studies dedicated specifically to ker-
nel concurrency bugs. Prior work [40] on user-space concurrency
bugs has yielded valuable insights into bug patterns, manifestation
conditions, and repair strategies—insights that have shaped the
design of testing tools, programming models, and verification tech-
niques. Unfortunately, it is unclear whether or to what extent these
user-space findings generalize to kernels. This knowledge gap is
particularly concerning for several reasons. First, kernel correctness
is essential for applications that depend on it [20, 36]. Second, kernel
concurrency is often implemented with finer granularity and more
aggressive optimizations than application concurrency [15, 42, 43],
further increasing the risk of subtle concurrency bugs. Third, ker-
nels differ significantly from applications in structure and execution
behavior: they interact directly with hardware, rely on low-level
code, and use specialized synchronization primitives such as Read-
Copy Update (RCU) [23, 42] and per-CPU variables. These differ-
ences raise a critical question: do kernel concurrency bugs follow
the same patterns observed in user-space, or do they exhibit distinct
characteristics, which could impact how these bugs are prevented,
diagnosed, and fixed in practice?

This paper presents the first comprehensive study on kernel
concurrency bugs. Our study analyzes 200 concurrency bugs drawn
from 4.5 years of Linux kernel development history. We examine
their manifestation conditions, root causes, discovery and repairs
to shed light on the unique characteristics of kernel concurrency.
In particular, our analysis centers on two key questions:

1. What are the similarities and differences between kernel
and user-space concurrency bugs? One would expect the char-
acteristics of concurrency bugs in kernels and applications to have
important differences. On the one hand, identifying and characteriz-
ing such differences is crucial for understanding the kernel-specific
challenges in correctly using kernel concurrency. On the other

https://doi.org/10.1145/3744916.3787790
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3744916.3787790

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

hand, identifying the similarities between kernel and user-space
concurrency bugs can underscore the common, cross-stack pitfalls
of concurrent programming.

Our findings reveal that:

e 27.5% of kernel concurrency bugs only manifest under specific in-
terrupt events, which are often underexplored by existing testing
tools focused on thread interleavings.

e 44.0% of bugs occur in kernel drivers, with 69.3% of those in-
volving control paths, such as device initialization, shutdown,
suspend, and reset.

e 45.0% of bugs cannot manifest in typical virtual machines used
by Syzbot [54]—the leading continuous kernel testing platform—
due to hardware dependencies.

® 90.7% of non-deadlock bugs stem from atomicity or order vio-
lations, a high proportion, though not directly comparable to
user-space studies. The remaining bugs reflect kernel-specific
concurrency challenges, such as hardware-related kernel behav-
iors.

29.5% of bugs involve incorrect synchronization use, such as
choosing the weaker synchronization primitives or missing ini-
tializations (e.g., mutex_init()).

98.5% of bugs can be triggered with just one or two threads, sug-
gesting that it is reasonable for concurrency bug discovery tech-
niques to prioritize interleavings involving at most two threads,
rather than exhaustively exploring high thread counts.

2. How can these findings inform future tools for kernel con-
currency bug detection, diagnosis, and repair? Due to the lack
of comprehensive studies on kernel concurrency bugs, many prior
kernel concurrency bug tools are built on assumptions rooted in
user-space concurrency bug studies [30, 34, 57]. They often focus ex-
clusively on thread-based interleavings, overlook interrupt-driven
execution in the kernel, and exclude low-level or platform-specific
code such as bootloaders [21] or inline assembly to reduce the
analysis complexity. While these design choices are motivated by
practical concerns, it is unclear whether these assumptions faith-
fully capture the realities of kernel concurrency bugs.

Our study sheds light on these questions by revealing where
concurrency bugs actually occur and what is needed to address
them. Furthermore, our findings point to new opportunities for
improving tool designs, such as:

o Interrupt execution analysis is vital. 27.5% of bugs manifest
only when specific interrupt events occur. Bug detection tools
should therefore include interrupt-driven concurrency, not just
concurrency induced by system calls.

e Static and emulation-based methods are necessary. 45.0%
of bugs depend on hardware unavailable in common virtual-
machine-based environments [54]. Tools that rely solely on dy-
namic execution will miss these cases; static analysis or specific
hardware emulation is required to detect such bugs.

e Driver-focused analysis pays off. 44.0% of the bugs reside
in kernel device drivers, with 69.3% of those involving device
control operations. Constraining the analysis scope to device

Sishuai Gong, Chih-En Lin, Kevin Wu, Edwin Lu, and Pedro Fonseca

drivers, especially their control paths, can yield high returns
with reduced complexity.

e Assembly and bootloader exclusions appear justified. De-
spite concerns about hard-to-analyze low-level code, we do not
encounter any concurrency bugs involving inline assembly or
bootloader logic. This observation suggests that, in practice,
excluding such code—when it substantially reduces analysis
complexity—may represent a reasonable trade-off for verification
and testing tools targeting concurrency bugs.

e Atomicity and order violations are prevalent. 90.7% of non-
deadlock bugs stem from atomicity or order violations. This
indicates that analysis techniques targeting these root causes
are broadly applicable to kernel code.

e Systematic synchronization guidance is needed. 29.5% of
bugs involve misuse of synchronization primitives, often due to
misunderstanding valid concurrency contexts. Tools that infer
and explain potential interleavings can help developers choose
correct synchronization mechanisms.

e Automation remains underutilized. 65.9% of bugs are found
manually by kernel developers, highlighting a significant oppor-
tunity for automated tools that provide actionable diagnostics
and reproducible test cases.

Our key findings and their implications are summarized in Table 1.

Contributions This paper presents the first comprehensive study
of concurrency bugs in the Linux kernel. Our study focuses on ana-
lyzing the kernel-specific properties of kernel concurrency bugs,
and the similarities and differences that kernel concurrency bugs
have over user-space concurrency bugs. We manually examine 200
kernel concurrency bugs selected from a 4.5-year period of kernel
commits. Although prior work has studied concurrency bugs in
applications and others have studied kernel bugs [22, 47], few stud-
ies examine kernel concurrency bugs. The few that do cover kernel
concurrency bugs focus only on narrow classes of concurrency
bugs in the Linux kernel, such as use-after-free bugs [18] and data
races [50, 52]. §8 further discusses the related work.
To foster future research, we publicly release our dataset!.

2 Methodology

Our study follows a two-stage methodology. In the first stage, we
curate a dataset of Linux kernel concurrency bugs through a semi-
manual selection process. In the second stage, we conduct an in-
depth manual analysis of each bug to extract its key characteristics.
We describe these stages in detail below.

2.1 Bug selection

Drawing on common practices from prior studies of user-space
concurrency bugs [10, 18, 27, 40, 53], we adopt three guiding princi-
ples when selecting bugs for the study. Specifically, we (1) focus on
the main kernel development branch (i.e., mainline); (2) randomly
sample bug-fixing commits; and (3) apply keyword-based filtering
to obtain an initial set of potential concurrency bugs, followed by
manual validation to retain only true bugs.

!Dataset: https://github.com/rssys/kernel-concurrency-bug-study

https://github.com/rssys/kernel-concurrency-bug-study

A Comprehensive Study of Concurrency Bugs in the Linux Kernel

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Findings on bug manifestations (§3)

Implications

Most kernel concurrency bugs (71.0%) are caused by thread-based interleav-
ings. However, 27.5% of bugs only manifest when specific interrupts occur.

Detection approaches focused on concurrent thread interleavings are ef-
fective for most bugs, but comprehensive detection must also account for
interrupt-driven concurrency, which remains underexplored.

44.0% of concurrency bugs reside in driver code. Among them, 69.3% result
from concurrent operations on control paths (e.g., init vs. reset).

Constraining analysis to logically opposing operations offers a tractable
trade-off between complexity and effectiveness.

45.0% of concurrency bugs cannot manifest in the virtual machines used
by Syzbot, as they depend on hardware or configurations not supported in
typical testing environments.

Existing VM-based dynamic testing platforms miss a significant portion of
concurrency bugs. Static analysis or hardware-aware modeling is necessary
to expose these hardware-dependent bugs.

Findings on bug patterns (§4)

Implications

Deadlocks account for 24.5% of concurrency bugs. 32.7% of them are single-
thread deadlocks, mostly caused by unexpected indirect control paths or
interrupt handlers acquiring locks already held by the thread.

Effective deadlock detection requires modeling indirect control flow that
spans thread execution and interrupt contexts, particularly under asynchro-
nous hardware events.

90.7% of non-deadlock bugs result from atomicity or order violations, a high
proportion that partially overlaps with patterns seen in user-space, but also
reflects kernel-specific variation.

Techniques for addressing atomicity and order violations are broadly ap-
plicable, though kernel-specific concurrency behaviors require additional
consideration.

Synchronization misuse accounts for 29.5% of bugs, including incorrect
primitive selection or missing required operations (e.g., mutex_init()).

Choosing correct synchronization in the kernel is non-trivial; inferring
possible concurrent contexts can help guide synchronization design.

98.5% of concurrency bugs can be reproduced with two or fewer threads.

Restricting analysis to two threads captures most kernel concurrency bugs,
while still requiring consideration of interrupt handlers.

Findings on bug discovery and repair (§5, §6)

Implications

Among 85 concurrency bugs for which we are able to determine how they
are found, automated tools contribute 34.1% of discoveries while most con-
currency bugs (65.9%) are found manually.

There is considerable opportunity to improve the automated detection of
kernel concurrency bugs. Future tools should aim to support diverse concur-
rency inputs, provide actionable diagnostics, and reliably reproduce failures.

Kernel concurrency bugs exist for significantly longer periods (1,258 vs. 765
days on average) and require more invasive patches (1.9X more insertions)
than typical kernel bugs.

Kernel concurrency bugs are more time-consuming and labor-intensive to
address. Automated repair techniques targeting concurrency issues could
substantially reduce developer burden and patch time.

Table 1: Our findings on kernel concurrency bugs and the implications for bug discovery, diagnosis and repair.

1. Bug source. We use the commit history of the mainline Linux
kernel as the data source, as it provides the most complete and au-
thoritative record of confirmed and fixed bugs. In contrast, the CVE
database [3] cannot serve as a representative source for kernel con-
currency bugs: CVE reporting is known to be incomplete and biased
toward bugs that are easier to exploit [2], such as memory errors.
For example, in 2022 alone, more than 20K bug-fix commits were
made to the Linux kernel, whereas only 281 bugs were documented
as CVEs [3]. This discrepancy largely stems from the voluntary
nature of CVE registration and the kernel community’s historical
reluctance to file CVEs [8, 9]. Similar limitations apply to other
sources, such as Syzbot [54], a public continuous kernel testing
project, which reports only bugs found by itself. Although CVEs
and Syzbot could, in principle, serve as supplementary sources, inte-
grating them in a statically sound manner would require substantial
additional validation and analysis. Therefore, we use the mainline
bug-fix commits as the sole source, ensuring broad coverage over a
4.5-year period (from January 1, 2019, to June 1, 2023).

2. Keyword-based filtering. The Linux mainline history contains
a large number of commits—376,288 commits during our target
period. To focus the analysis on commits that are likely related to
concurrency bugs, we adopt a keyword-based filtering strategy that

has been widely used in prior bug studies [17, 27, 40]. Specifically,
we perform a case-insensitive search over commit messages using
a set of concurrency-related keywords to obtain an initial candidate
set. The keyword list includes ‘deadlock’, ‘livelock’, ‘lock’, ‘mutex’,
‘reu’, ‘race’, ‘concurren’, ‘interrupt’, ‘contention’, ‘preempt’, ‘atomic’,
‘locking’, and ‘synchronization’. This filtering step yields 63,022 can-
didate commits, which are then randomly ordered and forwarded
to the next stage for manual inspection.

To assess the effectiveness of the filtering approach, we conduct
a validation experiment on an independent sample of commits. We
randomly select 100 commits from the Linux mainline history and
manually inspect each to determine whether it corresponds to a
concurrency bug and, if so, whether the bug is well documented.
Among these, 5 commits are confirmed to be true concurrency
bug fixes. We then apply the same keyword-based filter to this
100-commit sample. The filter selects 17 commits, substantially
reducing the search space. Of these 17 commits, 3 correspond to
true concurrency bug fixes. The remaining 2 concurrency bug fixes
are not captured by the filter because their commit messages lack
explicit concurrency-related terminology; our manual validation
identifies them as concurrency-related primarily through the code
changes, not the commit message.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

The validation confirms that filtering effectively narrows the
analysis to well-documented and clearly-described concurrency
bugs, while potentially missing bugs that are only implicitly doc-
umented. This limitation is shared by prior studies using similar
approaches [17, 27, 40], and represents a practical trade-off neces-
sary to make a large-scale manual study of kernel concurrency bugs
feasible given the complexity of analyzing concurrency bugs [40].

3. Manual validation. The keyword-based filter produces a set
of commits that are likely to correspond to concurrency bug fixes.
We manually examine these commits to confirm true concurrency
bug fixes. Starting from the randomly ordered list, two independent
reviewers analyze commits through a two-phase review process. In
the first phase, each reviewer independently inspects the commit
message, code changes, and any linked bug reports or mailing list
discussions. A bug is classified as a concurrency bug if it manifests
only under specific interleavings (i.e., specific execution orders that
can occur when multiple execution contexts run concurrently). In
the second phase, reviewers resolve any disagreements through
joint discussion to reach a consensus.

Through the two-phase process, we examine 1,633 commits and
confirm 200 kernel concurrency bugs. Confirming kernel concur-
rency bugs at this scale is non-trivial: each kernel commit often
requires several hours of careful reasoning about low-level kernel
code, interleaved execution, and patch semantics. Beyond confir-
mation, each bug in our dataset is analyzed in depth (§2.2) to char-
acterize its manifestation, root cause, discovery method, and fix.
To our knowledge, this dataset is the first and largest of its kind: a
collection of kernel concurrency bugs that are deeply characterized
through consistent and rigorous manual analysis. Our dataset also
is comparable to, and often larger than, those used in prior studies
that conduct similarly detailed analyses of concurrency bugs in
user-space applications [17, 27, 40, 53, 55].

2.2 Bug analysis

In-depth analysis of kernel concurrency bugs is inherently difficult
and time-consuming. Nevertheless, every bug in our dataset is cross-
reviewed by two independent reviewers following the two-phase
review process described earlier—independent inspection followed
by joint discussion to resolve disagreements—to ensure robustness.
Building on this labor-intensive effort, we systematically analyze
each bug along several key dimensions, including manifestation
conditions, bug patterns and root causes, discovery methods, and
repair. Our goal is to uncover actionable insights to guide future
research on reliable and secure kernel concurrency.

Concurrency bug manifestation conditions. Kernel concur-
rency bugs can arise under complex and diverse execution contexts.
While user-space programs may handle asynchronous events such
as signals, interrupt handling in the kernel is far more complex:
hardware interrupts can preempt almost any kernel instruction,
execute on any CPU, and manipulate shared kernel state. Conse-
quently, some kernel concurrency bugs manifest only when specific
interrupts occur. Beyond interrupts, kernel concurrency bugs may
also depend on particular hardware configurations. Large portions
of the kernel—especially device drivers [51]—are hardware-specific
and execute only in the presence of the corresponding devices. As

Sishuai Gong, Chih-En Lin, Kevin Wu, Edwin Lu, and Pedro Fonseca

a result, bugs in such code may never manifest in virtualized or
testbed environments that lack the required hardware.

Despite the widespread belief [37, 43] that some kernel concur-
rency bugs depend on hardware interrupts or configurations, these
manifestation conditions have not been systematically quantified.
We present the first quantitative study of how kernel concurrency
bugs manifest in practice. Specifically, we study (1) how many bugs
depend on interrupts, (2) how many can manifest in virtual machine
environments commonly used by existing dynamic testing tools,
and (3) how these bugs are distributed across kernel subsystems,
with particular emphasis on bugs located in device drivers.

Concurrency bug patterns and root causes. We analyze the
root causes of kernel concurrency bugs and examine whether well-
established patterns observed in user-space concurrency bugs still
hold on the kernel. First, we classify each bug by its underlying
cause and compare the distribution of bug patterns with those
reported in prior studies of user-space concurrency bugs [40]. Sec-
ond, we conduct a kernel-specific investigation into how misuse
of synchronization primitives (e.g., spinlocks, mutexes, rcu) leads
to concurrency bugs. Because the kernel provides a broader and
more performance-sensitive set of synchronization mechanisms
than user-space programs, understanding their misuse is essential
for improving the correctness of concurrent kernel code and for
guiding the design of future detection tools.

Concurrency bug discovery and repair. We next study how
kernel concurrency bugs are discovered and repaired. For each bug,
we identify the discovery method—such as manual inspection or
automated tools including static analyzers and dynamic testing
tools—to assess the effectiveness of tool support for finding kernel
concurrency bugs. Then, we analyze the bug repair process by
measuring (1) the time between bug introduction and fix, and (2) the
patch complexity, including the size of code changes and the number
of modified files or functions. We compare these metrics against
those of general kernel bugs to determine whether concurrency
bugs pose greater challenges during maintenance and repair.

2.3 Threats to validity

Concurrency bugs are particularly difficult to reproduce, and many
require specific hardware or execution environments. As a result,
our analysis is based on commit messages, code changes, kernel
source code, mailing list discussions, and related artifacts, rather
than direct bug reproduction. While this approach is necessary
given the scale of the study and the practical barriers to reproduc-
ing kernel concurrency bugs, it introduces some uncertainty in
characterizing certain bugs. We explicitly note such cases in our
results when definitive analysis is not possible.

3 Concurrency bug manifestation conditions

This section examines three key factors that influence the manifes-
tation of kernel concurrency bugs: (1) whether a bug manifests only
when certain interrupt events occur; (2) whether a bug depends
on the specific hardware, particularly whether it can occur in the
virtual machine environments commonly used by existing testing
tools; and (3) whether a bug is tied to specific kernel subsystems.

A Comprehensive Study of Concurrency Bugs in the Linux Kernel

Category Bugs

Interrupt-based 55 (27.5%)
Thread-based 142 (71.0%)
Unknown 3(1.5%)
Total 200

Table 2: Distribution of concurrency bugs by whether bug
manifestation requires at least one interrupt event.

3.1 Interrupt-based concurrency bugs

Concurrency in the kernel arises from two main sources: system
calls and hardware interrupts. System calls are invoked by user-
space applications and executed by kernel threads through well-
defined entry points. In contrast, hardware interrupts are asynchro-
nous events generated by devices; interrupt handlers may preempt
running threads at almost any point, introducing additional inter-
leavings with thread execution. Most prior work on dynamic kernel
concurrency testing [28, 30-32, 35, 54] focuses on concurrency trig-
gered by system calls, leaving interrupt-driven concurrency largely
unexplored. As a result, bugs whose manifestation fundamentally
depends on interrupt execution may be systematically overlooked,
motivating a closer examination of interrupt-driven concurrency
in the kernel.

We determine whether a bug’s manifestation requires interrupts
by inspecting the bug-fix commit and the affected code paths. A
bug is classified as interrupt-based only if at least one involved code
region is reachable exclusively through interrupt handling (e.g., an
interrupt handler or deferred interrupt context). If the same buggy
code path can also be triggered through system calls, interrupt
involvement is not considered essential, to avoid over-attributing
bugs to interrupts. We label a bug as unknown when evidence is
insufficient to determine its execution context.

The agreement between two independent reviewers (§2.2) is
strong. When including unknown cases, Cohen’s K [41] is 0.79 (95%
confidence interval [0.68, 0.86]), indicating moderate agreement;
when excluding unknown cases, K increases to 0.92 (95% confidence
interval [0.83, 0.97]), indicating nearly perfect agreement. Each
reviewer’s classifications also show high concordance with the
final consensus (accuracy 0.92 and 0.98, respectively), suggesting
that disagreements are rare and that the analysis is robust.

Table 2 summarizes the results. A nontrivial fraction of kernel
concurrency bugs (27.5%) are interrupt-based, highlighting the crit-
ical role of interrupt-driven concurrency in the kernel. Figure 1
shows an example involving two thread contexts and an interrupt
handler. In this bug, thread A holds iommu->block, while thread B
holds domain->lock. Because interrupts are not disabled by thread
A, an interrupt may preempt execution at an inopportune moment
and attempt to acquire domain->lock, resulting in a deadlock.

Interrupt-based bugs are challenging to find because interrupt
handlers are inherently asynchronous and often execute under
constrained synchronization rules. These properties substantially
expand the space of feasible interleavings and complicate system-
atic exploration, making such bugs particularly difficult to trigger
and reproduce in practice. Existing tools such as Syzkaller predom-
inantly focus on concurrency arising from system calls and leave
interrupt paths largely unexplored. Our findings therefore expose a
critical gap in current testing practice and motivate the development

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

1 /* Thread A on CPUO %/ 10 /* Thread B on CPUl */
2 /*intel_svm_bind_mm()*/ 11 /xintel_svm_unbind_mm()x*/
3 - lock(&iommu->lock); 12

4 + lock_irqgsave(...); 13

5 14 local_irq_disable();

6 15 lock(&domain->lock);

7 16 lock(&iommu->lock);

8 <Interrupt> 17

9 lock (&domain->1lock) ; 18

x% Deadlock ***

Bug-inducing interleaving: 3 -> 14, 15, 16 -> 8
Figure 1: An interrupt-based deadlock in the VT-d driver [19],
which manifests only when thread execution interleaves
with an interrupt handler.

of tools that more directly exercise interrupt-driven concurrency.
Interestingly, we do not observe any concurrency bugs triggered
solely by multiple interrupts. This likely reflects strict serialization
rules enforced by the kernel, which prevent simultaneous execution
of interrupt handlers [25].

Finally, we observe that most kernel concurrency bugs (71.0%)
are thread-based. These bugs commonly involve concurrent sys-
tem calls accessing shared kernel state without adequate synchro-
nization, underscoring the continued importance of implementing
thread-safe system call paths. This result also provides quantitative
support for the effectiveness of existing testing tools that primarily
explore interleavings of concurrent system calls.

s N
Finding: Although thread-based concurrency accounts for

the majority of kernel concurrency bugs (71.0%), a nontrivial
27.5% manifest only under interrupt-driven execution.

Implication: The presence of interrupt-based concurrency
bugs indicates that tools centered on thread interleavings are
necessary but insufficient, motivating testing approaches that

explicitly consider concurrency involving interrupts.
\. J

3.2 Hardware-dependent concurrency bugs

In addition to the emphasis on system-call-driven concurrency, ex-
isting dynamic kernel testing approaches are constrained by their
reliance on virtualized execution environments. Modern kernel
testing platforms such as Syzbot [54] typically run the kernel inside
virtual machines (VMs) configured with common CPU architectures
(e.g., x86-64, ARM, and RISC-V) and a limited set of standard virtual
devices. This design enables scalable and automated bug discovery
by simplifying kernel deployment and execution, but it also restricts
testing coverage to code paths that can execute under these virtual-
ized hardware configurations. As a result, substantial portions of
the kernel remain untested [48, 51], particularly code that depends
on specific physical devices or less common architectural features.
We therefore quantify how often kernel concurrency bugs require
hardware configurations unavailable in typical VM-based testing
environments such as Syzbot, by comparing each bug’s hardware
requirements against Syzbot’s supported architectures and devices.

For each bug, we determine whether it can manifest in a typical
Syzbot environment. Our analysis proceeds as follows. First, we
review Syzbot’s supported architectures and virtual devices. Second,
we examine the fix commit and the relevant kernel code to identify
the hardware involved in the buggy execution, such as specific
device drivers or architecture-dependent behavior. We classify a bug

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Category Bugs

VM-compatible
Hardware-dependent

110 (55.0%)
90 (45.0%)

Total 200

Table 3: Distribution of concurrency bugs by whether they
can manifest in the virtual machine environments used by
Syzbot.

as hardware-dependent if its manifestation requires physical devices,
peripherals, or architectural behaviors that are not supported or
exercised in Syzbot’s VM configurations. Bugs that can manifest
under standard VM environments are classified as VM-compatible.

Two reviewers perform the classification of each bug’s hardware
requirements. The inter-reviewer agreement is moderate, with a
Cohen’s K [41] of 0.63 (95% confidence interval [0.51, 0.73]) when
including unknown cases and 0.65 (95% confidence interval [0.53,
0.75]) when excluding them. Each reviewer’s results align well with
the final consensus (accuracy 0.92 and 0.90, respectively), suggesting
that the overall classification is consistent and reliable.

Table 3 summarizes the results. We find that 45.0% of concurrency
bugs in our dataset are hardware-dependent and cannot manifest in
typical VM-based testing environments. These bugs include issues
in device drivers for specific peripherals (e.g., network cards, GPUs,
and USB devices), as well as bugs that arise only on particular CPU
architectures. Figure 2 illustrates a bug specific to the powerpc
architecture. Due to weak memory ordering [33] on powerpc, both
CPUs can observe stale values and incorrectly conclude that the
reset is not necessary, leading to a missed watchdog reset.

These findings reveal a fundamental limitation of VM-based dy-
namic testing: Virtualized devices often lack the fidelity needed
to reproduce real-world kernel concurrency behaviors, leaving im-
portant code regions—particularly in drivers/ and arch/—largely
unexplored. While static analysis tools are not constrained by run-
time environments and could, in principle, reason about hardware-
dependent code, they often struggle with low-level semantics (e.g.,
memory models) and pervasive indirect control flow [11, 13, 14, 26,
38, 46]. Among the 85 bugs for which discovery methods can be
identified, none are discovered by static analysis tools (§5).

e 2
Finding: 45.0% of kernel concurrency bugs are hardware-

dependent and cannot manifest in typical VM-based testing
environments.

Implication: Future research should explore bug finding
techniques that can effectively analyze hardware-specific code

under concurrency.
\. J

3.3 Subsystem-specific concurrency bugs

Finally, we analyze how kernel concurrency bugs are distributed
across subsystems to identify components where such bugs most
frequently arise and where bug finding efforts may be most effective.
To determine each bug’s location, we manually locate the culprit
source files and classify each bug according to the kernel directory
structure, following conventions used in prior kernel studies [45].
The mapping between components and top-level directories is as
follows: { Drivers: drivers/, sound/, File systems: fs/, Networking:

Sishuai Gong, Chih-En Lin, Kevin Wu, Edwin Lu, and Pedro Fonseca

1 /* Thread A on CPUQ x/ 8 /* Thread B on CPUl1 */
2 /*set_cpumask_stuck()*/ 9 /*set_cpumask_stuck()*/
3 set(thiscpu, STUCK); 10 set(thiscpu, STUCK);

4 set(thiscpu, DONE); 11 set(thiscpu, DONE);

5 + smp_mb(); 12 + smp_mb ()

6 if check(allcpu, DONE); 13 if check(allcpu, DONE);
7 reset_watchdog(); 14 reset_watchdog();

**xx Watchdog never resets *xx
Bug-inducing interleaving: 4 -> 6 -> 13 -> 11
Figure 2: A hardware-dependent concurrency bug [49] that
manifests only on the powerpc architecture due to its weak
memory ordering,.

Kernel Interrupt-based
Bugs

component bugs
Drivers 88 29 (33.0%)
File systems 27 1 (3.7%)
Networking 34 4(11.8%)
Core kernel 10 1 (10.0%)
Architecture 8 4 (50.0%)
Memory mgt. 12 7 (58.3%)
Headers 3 1(33.3%)
Others 18 8 (44.4%)
Total 200 55 (27.5%)

Table 4: Distribution of concurrency bugs across kernel com-
ponents, including the number and fraction of interrupt-
based bugs per component.

net/, Core kernel: kernel/, Architecture: arch/, Memory manage-
ment: mm/, Headers: include/, Others: block/, crypto/, etc. }

As shown in Table 4, the majority of concurrency bugs reside in
drivers (44.0%), file systems (13.5%), and networking code (17.0%).
These subsystems are among the largest in the kernel and frequently
involve interactions with hardware devices, or asynchronous I/O.
Our findings are consistent with prior work, such as Shi et al. [52],
who reported that 40% of kernel data races were found in drivers,
15% in file systems, and 13% in networking code. This alignment
reinforces the observation that large, modular, and I/O-intensive
subsystems are particularly susceptible to concurrency bugs.

Interrupt-based concurrency bugs in drivers. Among the 88
driver concurrency bugs in our dataset, 29 (33.0%) involve interrupt
events, slightly higher than the overall average of 27.5%. This is
unsurprising, as driver code frequently interacts with hardware via
interrupts that may interleave with thread-based execution paths
such as system calls. This result highlights the elevated concurrency
risk in drivers and underscores the importance of analyzing driver
code under realistic interrupt scenarios.

Control-path versus data-path concurrency in drivers. To
further understand driver-specific concurrency bugs, we examine
whether they occur in the control path or the data path. Control-
path code manages device state transitions, such as registration,
initialization, suspension, and reset, whereas data-path code han-
dles routine I/O operations and data transfers between the device
and the kernel. Despite the common assumption that control paths
are relatively serialized and less error-prone, we find that 61 out of
88 driver concurrency bugs (69.3%) occur in control-path code.
Closer inspection reveals that many bugs arise from concurrent
execution of logically conflicting operations, such as registration

A Comprehensive Study of Concurrency Bugs in the Linux Kernel

Component Order viol. Atom. viol. Deadlock Other

Drivers 20 (227%) 40 (455%) 22 (25.0%) 6 (6.8%)
File systems 3 (11.1%) 11 (40.7%) 10 (37.0%) 3 (11.1%)
Networking 10 (29.4%) 17 (50.0%) 6 (17.7%) 1 (2.9%)
Core kernel 2 (20.0%) 6 (60.0%) 1 (10.0%) 1 (10.0%)
Architecture 1 (12.5%) 2 (25.0%) 4 (50.0%) 1 (12.5%)
Memory mgt. 0 (0%) 9 (75.0%) 2 (16.7%) 1 (8.3%)
Headers 0 (0%) 3 (100%) 0 0%) 0 (0%)
Others 0 (0% 13 (72.2%) 4 (222%) 1 (5.6%)
Total 36 (18.0%) 101 (50.5%) 49 (24.5%) 14 (7.0%)

Table 5: Breakdown of concurrency bug root causes [40] (or-
der violations, atomicity violations, deadlocks, and others)
across kernel components.

versus deregistration, or init versus reset. Such operations can
leave devices in inconsistent states, trigger use-after-free errors, or
cause incomplete cleanup. This finding indicates that concurrency
between conflicting device control operations is error-prone, and
that stronger synchronization or serialization in control paths could
substantially reduce real-world concurrency bugs [61].

s \
Finding: Drivers account for 44.0% of concurrency bugs,

and 69.3% of those are caused by logically conflicting device
operations on the control path (e.g., init vs. reset).

Implication: Kernel drivers should be a priority for con-
currency testing and hardening. Targeting control path logic,
particularly antonymous operations, can reduce complexity

while covering a large portion of real-world concurrency bugs.
\ J

4 Concurrency bug root causes and patterns

This section analyzes the root causes and patterns of kernel con-
currency bugs, focusing on bug taxonomies, thread requirements
for reproduction, and synchronization misuse.

4.1 Atomicity and order violations

Non-deadlock concurrency bugs constitute the majority of our
dataset (151 out of 200). To understand their root causes, we follow
the taxonomy proposed by prior work on user-space concurrency
bugs, which categorizes such bugs—based on incorrect assumptions
about how operations execute concurrently—into two types [40]:
atomicity violations and order violations. An atomicity violation oc-
curs when a developer intends a sequence of operations to execute
without interference but fails to enforce this property, allowing con-
current execution to observe intermediate states. An order violation
arises when an assumed ordering between concurrent operations
is not properly enforced, permitting unintended reordering.

To classify bugs, we manually inspect bug-fix commits and the
corresponding code changes to infer the violated concurrency as-
sumption. Specifically, we determine whether a bug stems from
missing atomicity across a sequence of operations or from an unex-
pected ordering between concurrent operations that violates the
developer’s intended execution order.

As shown in Table 5, atomicity and order violations account
for 90.7% (137 out of 151) of non-deadlock concurrency bugs in
our dataset. Prior studies of user-space applications reported a

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

1 /* Thread A on CPUO */ 16 /* Thread B on CPUl */
2 /* tls_sw_recvmsg() */ 17 /* tls_decrypt_done() */
3 18 + spin_lock_bh(...);

4 19 // initial: pending = 1
5 20 a = atomic_dec(pending);
6 + spin_lock_bh(...); 21

7 p = atomic_read(pending); 22

8 + spin_unlock_bh(...); 23

9 if (p) 24

10 wait(); 25

11 else 26

12 reinit_completion(); 27

13 28 if (ta)

14 29 complete();

15 30 + spin_unlock_bh(...);

*x% Double completion, connection lost **x
Bug-inducing interleaving: 20 -> 7 ~ 12 -> 29
Figure 3: An atomicity violation in the TLS subsystem [58],

where atomic memory accesses are insufficient to enforce
atomic execution at the code-region level.

higher fraction—97%—of non-deadlock bugs falling into these two
categories [40]. This result confirms that incorrect assumptions
about atomicity and ordering remain the dominant root causes of
concurrency bugs in both user-space and kernel code.

Figure 3 illustrates a representative atomicity violation in the
TLS subsystem that leads to broken network connections. The
bug occurs when two kernel threads concurrently execute tls_
sw_recvmsg() and tls_decrypt_done(). One thread (tls_decrypt_
done()) decrements a shared variable pending from 1 to 0, while the
other thread (t1s_sw_recvmsg()) observes pending as 0 and invokes
reinit_completion(). This interferes with the complete() operation
concurrently performed in tls_decrypt_done(), eventually causing
connection loss. Notably, although atomic operations are used to
update pending, the higher-level sequence of operations is not pro-
tected, demonstrating that atomic memory operations alone are
insufficient to enforce atomicity at the control-flow level.

Our analysis identifies several recurring factors that make atom-
icity and order violations particularly prevalent in kernel code.
First, the kernel must handle a wide variety of asynchronous exe-
cution sources—ranging from user-space system calls to hardware
interrupts—making it difficult for developers to fully enumerate all
interleavings. Second, the same code may execute under different
preemption or scheduling models (e.g., real-time kernels), exposing
it to substantially different interleavings than originally anticipated.
Third, complex control flow and deep call chains complicate reason-
ing: a single function may be invoked from multiple call sites with
distinct synchronization contexts and ordering assumptions. Finally,
continuous kernel evolution through refactoring and performance
optimizations can subtly alter concurrency behavior, invalidating
assumptions that are previously correct.

While atomicity and order violations are prevalent, we also ob-
serve a reduction from the 97% reported in prior user-space studies
to 90.7% in the kernel. The remaining 9.3% of non-deadlock bugs
fall into the other category. These bugs often involve kernel-specific
concurrency behaviors, such as interactions with timers, CPU hot-
plug operations, or deferred execution mechanisms. They confirm
concurrency challenges that do not fit neatly into standard atomicity
or order violation taxonomies and suggest the need for additional
techniques tailored to kernel-specific concurrency behaviors.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Finding: Atomicity and order violations account for the vast
majority (90.7%) of non-deadlock kernel concurrency bugs.
Implication: Classic concurrency bug patterns remain highly
prevalent in the kernel, indicating that techniques targeting
atomicity and ordering assumptions remain broadly effective.
At the same time, a nontrivial set of kernel-specific concur-
rency bugs falls outside these patterns and often requires
specialized, context-aware detection approaches.

4.2 Deadlocks

Deadlocks are a distinct class of concurrency bugs that manifest as
indefinite blocking, where one or more threads wait for resources
that will never be released. Because deadlocks differ fundamentally
in both manifestation and root cause, they require specialized de-
tection techniques [24, 44]. Consistent with prior studies [27, 39],
we therefore analyze deadlocks separately from non-deadlock bugs.

In our dataset, deadlocks account for 24.5% (49 out of 200) of all
concurrency bugs, which is comparable to the 29.5% reported in
prior studies of user-space applications [40]. To better understand
how deadlocks arise in the kernel, we examine the minimum num-
ber of threads required to reproduce each bug. In this analysis, we
do not treat interrupt handlers as separate threads because inter-
rupt handlers execute in the context of a preempted thread [45].
This modeling aligns with kernel execution semantics and reflects
the actual conditions under which these bugs manifest.

Our analysis shows that 32.7% of deadlocks (16 out of 49) can
occur with a single thread. These bugs—often referred to as double-
lock bugs—arise when a thread re-enters code that attempts to
acquire a lock it already holds. A common source of such reen-
trancy is indirect control flow via function pointers. For example, in
Figure 4, usb_function_deactivate() acquires a spinlock and then
invokes a chain of function calls that eventually reaches composite_
disconnect(), which attempts to acquire the same lock again. This
deadlock is particularly hard to detect because the call occurs
through a function pointer (disconnect()), which can resolve to
many implementations, only one of which causes the bug.

Another major cause of double-lock bugs is interrupt-driven
reentrancy. In these cases, a thread acquires a lock and is interrupted
before releasing it, and the interrupt handler, executing in the same
thread context, attempts to acquire the same lock. For instance, one
bug in our dataset involved a function that was assumed to always
execute with interrupts disabled; along a less common execution
path, however, it was invoked with interrupts enabled, allowing
a subsequent interrupt handler to re-acquire a lock already held
by the thread. Although both causes are well known [1, 6], their
continued occurrence highlights the challenge in enforcing locking
and interrupt assumptions across all call paths in kernel code.

The majority of the remaining deadlocks (63.3%) require two
threads to manifest. These bugs are typically caused by cyclic lock
dependencies, where two threads acquire locks in different orders,
resulting in a circular wait. This distribution closely matches obser-
vations from prior user-space studies [40], which also found that
two-thread deadlocks dominate.

Sishuai Gong, Chih-En Lin, Kevin Wu, Edwin Lu, and Pedro Fonseca

/* Thread A on CPUO */
/* usb_function_deactivate() x/
spin_lock_irgsave(lock);
+ spin_unlock_irqgrestore(lock);
usb_gadget_deactivate();
usb_gadget_disconnect();
gadget->udc->driver->disconnect();
configfs_composite_disconnect();
composite_disconnect();
10 spin_lock_irqgsave(lock);
11 + spin_lock_irgsave(lock);
%%* Deadlock *

WCooO~NOOUAWNRE

Bug-inducing double locking: 3 -> 5~9 -> 10
Figure 4: A single-thread deadlock—also known as a double-
lock bug—involving indirect control flow [16].

Component Number of threads
1 2 >2

Drivers 16 (182%) 71 (80.7%) 1 (11%)
File systems 2 (74%) 24 (88.9%) 1 (3.7%)
Networking 3 (8.8%) 31 (91.2%) 0 (0%)
Core kernel 1 (10.0%) 9 (90.0%) 0 (0%)
Architecture 3 (37.5%) 5 (62.5%) 0 (0%)
Memory mgt. 1 (8.3%) 10 (83.3%) 1 (8.3%)
Headers 0 (0%) 3 (100%) 0 (0%)
Others 0 (0%) 16 (100%) 0 (0%)
Total 28 (14.0%) 169 (84.5%) 3 (1.5%)

Table 6: Minimum number of threads required to reproduce
concurrency bugs, grouped by kernel component.

()
Finding: About 32.7% of kernel deadlock bugs can occur with

only one thread, often due to interrupt handlers acquiring
locks already held by the interrupted thread.

Implication: Deadlock detection tools could prioritize the
analysis of two-thread lock interactions, but must also model
interrupts and check locking assumptions across different

control flow paths to detect single-thread deadlocks.
\ J

4.3 Number of threads involved

Beyond deadlocks, we examine the minimum number of threads
required to reproduce all kernel concurrency bugs in our dataset.
This analysis provides a broader view of concurrency complexity in
the kernel and helps assess whether kernel bugs typically require
high degrees of concurrency to manifest.

As shown in Table 6, most bugs—197 out of 200—can be repro-
duced with two or fewer threads. Specifically, 28 bugs (14.0%) can
occur with a single thread, 169 bugs (84.5%) require two threads,
and only 3 bugs (1.5%) require more than two threads.

The distribution closely mirrors observations from prior studies
of user-space concurrency bugs [40], which likewise found that
most concurrency bugs involve one or two threads. Despite the ker-
nel’s scale and complexity, kernel concurrency bugs rarely require
more than two threads to manifest. Therefore, tools that focus on
exploring interleavings involving one or two threads can reasonably
achieve high coverage of real-world kernel concurrency bugs while
substantially reducing the search space. At the same time, unlike
user-space applications, kernel concurrency is heavily influenced

A Comprehensive Study of Concurrency Bugs in the Linux Kernel

L. ‘Wrong Missing Incorrect

Synchronization
choice operation critical section

spinlock 5 (333%) 1 (67%) 9 (60.0%)
mutex 5 (357%) 4 (28.6%) 5 (35.7%)
rcu 1 (16.7%) 4 (66.7%) 1 (16.7%)
seqlock 1 (100%) 0 0%) 0 (0%)
rw_semaphore 1 (200% 0 0%) 4 (80.0%)
rwlock 0 0%) 0 (0%) 1 (100%)
memory barrier 1 (50.0%) 1 (50.0%) 0 (0%)
atomic instructions 3 (100%) 0 0%) 0 (0%)
other 8 (667%) 3 (250%) 1 (8.3%)
Total 25 (424%) 13 (22.0%) 21 (35.6%)

Table 7: Breakdown of concurrency bugs due to synchroniza-
tion misuse, by synchronization primitive and misuse type.

by interrupts. As discussed in §3.1, effectively modeling interrupt-
driven execution is essential for exposing kernel concurrency bugs,
even when only one or two threads are considered.

e 2

Finding: All but three concurrency bugs in our dataset can
be reproduced with no more than two threads.
Implication: Concurrency bug detection tools should pri-
oritize exploring one- and two-thread interleavings. For the
kernel, however, such tools must also account for interrupt-
driven execution to achieve comprehensive bug coverage.

4.4 Synchronization misuse

Kernel concurrency relies on a wide range of synchronization primi-
tives, each designed for specific execution contexts and performance
trade-offs. Misusing these primitives remains a major source of con-
currency bugs [12, 27], particularly given the kernel’s complex
execution model and diverse concurrency scenarios. We therefore
analyze how synchronization misuse contributes to kernel concur-
rency bugs and identify common patterns in incorrect synchroniza-
tion design. Specifically, we categorize concurrency bugs in our
dataset according to the type of synchronization misuse involved.
We identify three major classes. First, wrong choice refers to cases
where developers select an inappropriate synchronization primitive
that cannot provide sufficient protection. A common example is the
use of atomic operations to guard complex shared state that requires
mutual exclusion. Second, missing operation captures cases where
a required synchronization step is omitted along some execution
path—for instance, failing to acquire or release a lock, or neglecting
to wait for an RCU grace period after modifying shared data. Third,
incorrect critical section refers to situations where synchronization
is applied to the wrong code region: the protected region may be
too narrow to cover all shared accesses, or overly broad in ways
that introduce deadlocks or unnecessary contention.

As shown in Table 7, synchronization misuse accounts for a
substantial 29.5% of concurrency bugs in our dataset. Among these,
wrong choice is the most prevalent category (42.4%), followed by
incorrect critical section (35.6%) and missing operation (22.0%). This
distribution suggests that selecting an appropriate synchronization
mechanism is often more challenging than applying it correctly.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Discovery Method Bugs

Manual 56
Syzbot 18
Other tools 11
Total 85

Table 8: Discovery methods for concurrency bugs with known
provenance (85 out of 200).

Breaking down misuses by synchronization primitive provides
additional insight. Spinlocks and mutexes account for most mis-
use cases. Spinlock-related bugs are heavily skewed toward incor-
rect critical sections (60.0%), reflecting the difficulty of precisely
identifying which code regions must be protected in preemptible
and interruptible contexts. In contrast, RCU-related bugs are domi-
nated by missing operations (66.7%), typically due to omitted calls to
synchronize_rcu() needed to ensure a grace period after updates.
Atomic instructions appear exclusively in the wrong choice cate-
gory. This pattern is not accidental: atomic operations provide only
low-level, single-variable guarantees and do not naturally extend to
protecting multi-step operations or larger critical regions, making
them easy to misuse when stronger synchronization is required.

These synchronization misuses often stem from incomplete rea-
soning about possible concurrent execution contexts. For example,
as illustrated in Figure 1, developers use a spinlock to serialize two
functions that are known to execute concurrently. However, they
overlook the possibility that one function may be interrupted in
the middle, allowing an interrupt handler to access the same shared
state and violate the intended mutual exclusion. Such cases demon-
strate how subtle execution contexts—especially interrupts—can
invalidate otherwise reasonable synchronization decisions.

e N
Finding: Synchronization misuse contributes to a high per-

centage (29.5%, 59/200) of kernel concurrency bugs.

Implication: Automated analysis that can infer all possible
concurrent execution contexts can help avoid synchronization
misuse. Future research should focus on techniques that assist
developers in selecting and correctly applying synchroniza-
tion mechanisms based on the full range of possible kernel

execution scenarios.
\ J

5 Concurrency bug discovery

While much prior work has focused on designing automated detec-
tion techniques [29, 32, 35, 48], it remains unclear to what extent
such tools actually account for real-world concurrency bug discov-
eries. In this section, we examine the discovery sources of concur-
rency bugs in our dataset to assess the current balance between
automated tooling and human-driven debugging.

To determine how each bug is discovered, we manually examine
bug-fix commits and associated discussions, including Reported-by
tags, references to testing tools, and links to mailing list reports.
For 85 of the 200 bugs, sufficient information is available to identify
the discovery method; the remaining bugs lack explicit attribution
and are excluded from the breakdown below.

As shown in Table 8, most concurrency bugs with known dis-
covery sources (65.9%, 56 out of 85) are discovered manually by

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

developers through code review, in-house testing or debugging.
This observation is consistent with prior bug studies [27] and sug-
gests that developer insight and deep familiarity with subsystem
behavior remain central to uncovering concurrency bugs.
Automated tools account for the remaining 29 bugs (34.1%).
Among these, 18 bugs (21.2%) are reported by Syzbot [54], while
11 bugs (12.9%) are discovered using other testing approaches [4, 5,
7], including kernel-specific testing tools, custom test suites, and
platform- or vendor-specific frameworks. These tools typically rely
on dynamic execution combined with sanitizers such as KASAN,
KCSAN, and Lockdep to detect memory errors, data races, and dead-
locks. While automated tools do contribute meaningfully to concur-
rency bug discovery, their coverage remains limited. In particular,
their effectiveness often depends on the quality of test harnesses,
kernel configuration choices, and the ability to reproduce timing-
sensitive interleavings—limitations that mirror the manifestation
challenges identified in earlier sections (§3.1, §3.2, and §4).

e ~
Finding: Among concurrency bugs with known discovery

methods, most (65.9%) are found through manual developer
effort. Automated tools account for 34.1%.

Implication: There is substantial room for automated bug
discovery tools to improve, particularly in generating action-
able diagnostics to aid kernel developers.

6 Concurrency bug repair

Diagnosing and fixing concurrency bugs imposes significant cost on
kernel development. In this section, we examine kernel concurrency
bug repair along two dimensions: how long such bugs persist before
being fixed, and the complexity of the corresponding patches. We
compare these characteristics against kernel bugs of all types to
quantify the additional burden imposed by concurrency bugs.

6.1 Bug persistence time

To understand how long kernel concurrency bugs exist, we compare
their persistence time with that of kernel bugs of all types. We define
the persistence time as the number of days between the commit
that introduced the bug and the commit that fixed it, capturing how
long a bug remains latent in the codebase before it is resolved.

We identify bug introduction commits using the Fixes tag, which
is widely used in Linux kernel development to reference the orig-
inal faulty commit. Our analysis includes 104 concurrency bugs
and 57,217 kernel bugs of all types with identifiable introduction
commits from the same time period.

Figure 5 presents the cumulative distribution of persistence times
for concurrency bugs and kernel bugs of all types, which reveals
a substantial disparity. On average, concurrency bugs persist for
1,258 days before being fixed, compared to 765 days for kernel
bugs overall—over a 1.6x difference. One contributing factor is
the difficulty of diagnosing and reproducing concurrency bugs.
In our dataset, only 7.5% of concurrency bugs are reported with
a reproducer, substantially complicating root cause analysis and
validation and contributing to longer bug lifetimes.

Sishuai Gong, Chih-En Lin, Kevin Wu, Edwin Lu, and Pedro Fonseca

104

=
o
w

Fix time (days)
=
3

=
o
4

== Concurrency bugs
All bugs

10°

0% 20% 40% 60% 80% 100%
Population (%)

Figure 5: Persistence time of kernel concurrency bugs versus
kernel bugs of all types (denoted as all bugs), showing that
concurrency bugs exist for longer periods.

Metric Allbugs Concurrency bugs

of directories 1.1 1.2
of files 1.4 1.7
of functions 2.0 3.3
of hunks 44 7.5
of insertions 11.4 21.1
of deletions 6.6 9.9

Table 9: Average patch characteristics for kernel bugs of all
types (all bugs) and for concurrency bugs.

6.2 Patch complexity

We next compare the characteristics of patches used to fix con-
currency bugs with those used to fix kernel bugs of all types. We
assess patch complexity using several metrics, including the num-
ber of modified directories, files, functions, and hunks, as well as
the number of lines added and removed.

At coarse granularity, concurrency bug patches and patches for
bugs of all types appear similar: concurrency patches modify an av-
erage of 1.2 directories and 1.7 files, compared to 1.1 directories and
1.4 files for kernel bug fixes overall. However, differences become
more pronounced at a finer granularity. On average, concurrency
bug patches modify 3.3 functions and 7.5 hunks, whereas fixes for
bugs of all types modify only 2.0 functions and 4.4 hunks. Concur-
rency bug patches also introduce more changes, with 21.1 lines of
insertions and 9.9 lines of deletions on average—nearly double those
of kernel bug fixes overall (11.4 insertions and 6.6 deletions). The re-
sults indicate that concurrency bug fixes involve finer-grained and
more scattered modifications rather than broad structural changes.
This pattern is consistent with the nature of concurrency repair,
which often requires coordinated updates across multiple code lo-
cations, such as adjusting lock acquisition and release, reordering
accesses to shared data, or inserting synchronization primitives at
several points. Such localized yet nontrivial edits increase patch
complexity and raise the likelihood of introducing regressions.

Finding: Concurrency bugs persist longer and require more
complex patches than kernel bugs of all types.

Implication: The high cost of repairing concurrency bugs
highlights the need for improved diagnostic support and au-
tomated repair techniques tailored to concurrency bugs.

A Comprehensive Study of Concurrency Bugs in the Linux Kernel

7 Discussion

Beyond quantitative results, our study identifies two broader im-
plications: the relationship between concurrency and performance
regressions, and the security interpretation of concurrency bugs.

Concurrency-induced performance regressions. While our
study focuses on correctness bugs, we observe that concurrency
issues can also manifest as severe performance regressions under
high levels of concurrency. In our dataset, we identify a concurrency
bug that requires more than three threads to expose and manifests
as a performance degradation rather than a functional failure. In
the mm subsystem, developers introduced a resource-sharing mecha-
nism that improves throughput for moderate levels of concurrency
(e.g., 2-20 threads). But under higher degrees of concurrency (e.g.,
hundreds of threads), this optimization leads to severe contention
and significant slowdowns. This case highlights a subtle class of
concurrency bugs that blur the boundary between correctness and
performance. Such bugs may evade testing approaches that focus
on explicit failure symptoms or modest concurrency levels, yet can
have substantial impact in real-world deployments.

Security interpretation of kernel concurrency bugs. None of
the 200 concurrency bugs in our dataset are assigned CVEs. This
should not be interpreted as evidence that kernel concurrency bugs
lack security relevance. Rather, it reflects current practices in the
Linux kernel community, where CVE assignment is optional and
typically reserved for bugs with clear exploitability. For instance,
in 2022, only 281 Linux kernel CVEs were assigned, despite over
20,000 kernel bug fixes during the same period.

In practice, concurrency bugs often manifest as crashes, dead-
locks, or subtle state corruptions, making their exploitability diffi-
cult to assess. Nevertheless, they can undermine system availability,
reliability, and isolation, and in some cases may serve as build-
ing blocks for more sophisticated exploits. Consequently, relying
solely on CVE statistics likely underestimates the security impact
of kernel concurrency bugs, highlighting the need for more careful
consideration of their security implications.

8 Related work

Studies of user-space concurrency bugs. Concurrency bugs in
user-space applications have been extensively studied [17, 27, 40,
53, 55] using broadly similar empirical methodologies (§2). These
studies typically construct datasets of one to a few hundred real-
world bugs collected from representative applications, followed by
detailed manual analysis to identify common bug patterns, root
causes, manifestation conditions, and repair strategies. Collectively,
this line of work has yielded influential insights into user-space
concurrency bugs and has informed the design of testing tools,
debugging techniques, and programming models. Notably, Lu et
al. [40] conducted one of the most comprehensive early studies,
analyzing 105 concurrency bugs across four large applications to
characterize their causes, manifestations, and fixes.

In contrast to these efforts, our study focuses exclusively on the
kernel domain. While we revisit several observations established in
user-space studies, we show that kernel concurrency bugs exhibit
distinct characteristics due to factors unique to kernel execution,
such as interrupt-driven concurrency, and hardware dependence.

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

Thus, our work complements prior user-space studies by extending
understanding to kernel concurrency and by identifying challenges
and opportunities that are specific to kernel programming.

Studies of specific kernel concurrency bug classes. Several
efforts have examined particular classes of kernel concurrency
bugs. For example, a prior study [57] analyzed the distribution of
kernel data races over years, modules and kernel versions, and
performed detailed analysis on a subset of 30 sampled data races.
Similarly, Bai et al. [18] analyzed 949 use-after-free bugs in the
Linux kernel drivers and found that nearly 42% of bugs were caused
by concurrency, highlighting the prevalence of concurrency-related
errors in kernel code.

Our work differs from these studies in both scope and objec-
tive. Rather than focusing on a single bug category such as data
races or use-after-free bugs, which do not always correspond to
full-fledged concurrency bugs, we perform a comprehensive and
systematic analysis across all types of kernel concurrency bugs.
By manually analyzing a dataset of 200 real-world concurrency
bugs, we are able to quantitatively characterize their manifestation
conditions, root causes, discovery mechanisms, and repair costs.
This broader perspective enables a holistic understanding of kernel
concurrency bugs and provides empirical guidance for improving
kernel reliability and concurrent kernel design.

9 Conclusion

This paper presents the first comprehensive study of concurrency
bugs in the Linux kernel. We analyze 200 real-world kernel concur-
rency bugs fixed over a 4.5-year period and systematically character-
ize their manifestation conditions, root causes, discovery processes,
and repair characteristics. Our results show that kernel concurrency
bugs differ fundamentally from those in user-space applications,
particularly in their reliance on interrupts, hardware dependencies,
and synchronization patterns, highlighting the need for kernel-
specific techniques for addressing concurrency bugs.

Acknowledgments

We thank anonymous reviewers for their insightful feedback. We
also thank the Reliable and Secure System Lab members for their
detailed and helpful comments on this work and earlier drafts. This
work was funded in part by the National Science Foundation grants
CNS-2140305 and CNS-2145888 and gifts from Google and Intel.

References

[1] Unreliable Guide To Locking — The Linux Kernel documentation, September
2017. [Online; accessed 30. Nov. 2023].

[2] What to do about cve numbers. https://lwn.net/Articles/801157/, 2019.

[3] Cve. https://cve.mitre.org/, 2022.

[4] KMS Tests: igt-gpu-tools Reference Manual, November 2023. [Online; accessed
30. Nov. 2023].

[5] lkp-tests, November 2023. [Online; accessed 30. Nov. 2023].

[6] Locking — The Linux Kernel documentation, November 2023. [Online; accessed
30. Nov. 2023].

[7] tests/tcrypt-compat-test - master - cryptsetup / cryptsetup - GitLab, November
2023. [Online; accessed 30. Nov. 2023].

[8] How kernel cve numbers are assigned. https://lwn.net/Articles/978711/, 2024.

[9] The kernel becomes its own cna. https://lwn.net/Articles/961961/, 2024.

Tago Abal, Claus Brabrand, and Andrzej Wasowski. 42 variability bugs in the linux

kernel: A qualitative analysis. In Proceedings of the 29th ACM/IEEE International

Conference on Automated Software Engineering, ASE ’14, pages 421-432, New

York, NY, USA, 2014. Association for Computing Machinery.

=
=

https://lwn.net/Articles/801157/
https://cve.mitre.org/
https://lwn.net/Articles/978711/
https://lwn.net/Articles/961961/

ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

[11]

[12

(13

[14]

[15]

[16

[17]

(18

[19
[20]

[21]

[25]
[26]

[27]

[28

[29]

[30

[31

)
&

[33]

[34]

Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. SHARD:
Fine-Grained kernel specialization with Context-Aware hardening. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2435-2452. USENIX
Association, August 2021.

Adil Ahmad, Sangho Lee, Pedro Fonseca, and Byoungyoung Lee. Kard: light-
weight data race detection with per-thread memory protection. In Proceedings of
the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS °21, page 647-660, New York, NY,
USA, 2021. Association for Computing Machinery.

Daroc Alden. Finding locking bugs with smatch. https://lwn.net/Articles/
1023646/, 2025.

Jade Alglave, Will Deacon, Feng Boqun, David Howells, Daniel Lustig, Luc
Maranget, Paul E. McKenney, Andrea Parri, Nicholas Piggin, Alan Stern, Akira
Yokosawa, and Peter Zijlstra. Calibrating your fear of big bad optimizing compil-
ers. https://lwn.net/Articles/799218/, 2019.

Jade Alglave, Will Deacon, Feng Boqun, David Howells, Daniel Lustig, Luc
Maranget, Paul E. McKenney, Andrea Parri, Nicholas Piggin, Alan Stern, Akira
Yokosawa, and Peter Zijlstra. Who's afraid of a big bad optimizing compiler?
https://lwn.net/Articles/793253/, 2019.

Sriharsha Allenki. usb: gadget: Fix spinlock lockup on usb_function_deactivate,
2020.

Sara Abbaspour Asadollah, Daniel Sundmark, Sigrid Eldh, and Hans Hansson.
Concurrency bugs in open source software: a case study. Journal of Internet
Services and Applications, 8(1):1-15, 2017.

Jia-Ju Bai, Julia Lawall, Qiu-Liang Chen, and Shi-Min Hu. Effective static analysis
of concurrency Use-After-Free bugs in linux device drivers. In 2019 USENIX
Annual Technical Conference (USENIX ATC 19), pages 255-268, Renton, WA, July
2019. USENIX Association.

Lu Baolu. iommu/vt-d: Fix lockdep splat in sva bind()/unbind(), 2020.

Matthias Brun, Reto Achermann, Tej Chajed, Jon Howell, Gerd Zellweger, and
Andrea Lattuada. Beyond isolation: Os verification as a foundation for correct
applications. In Proceedings of the 19th Workshop on Hot Topics in Operating
Systems, HotOS 23, page 158-165, New York, NY, USA, 2023. Association for
Computing Machinery.

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. The s2e plat-
form: Design, implementation, and applications. ACM Transactions on Computer
Systems - TOCS, 30:1-49, 02 2012.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
An empirical study of operating systems errors. In Proceedings of the Eighteenth
ACM Symposium on Operating Systems Principles, SOSP "01, page 73-88, New
York, NY, USA, 2001. Association for Computing Machinery.

The Kernel Development Community. Linux rcu documentation, 2020.
Jonathan Corbet. The kernel lock validator. https://lwn.net/Articles/185666/,
2006.

Jonathan Corbet. Interrupts, threads, and lockdep. https://lwn.net/Articles/
321663/, 2009.

Jonathan Corbet. Indirect branch tracking for intel cpus. https://lwn.net/Articles/
889475/, 2022.

Pedro Fonseca, Cheng Li, Vishal Singhal, and Rodrigo Rodrigues. A study of the
internal and external effects of concurrency bugs. In 2010 IEEE/IFIP International
Conference on Dependable Systems & Networks (DSN), pages 221-230, New York,
NY, 2010. IEEE, IEEE Press.

Pedro Fonseca, Rodrigo Rodrigues, and Bjorn B. Brandenburg. SKI: Exposing ker-
nel concurrency bugs through systematic schedule exploration. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 14), pages
415-431, Broomfield, CO, October 2014. USENIX Association.

Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. An em-
pirical study on the correctness of formally verified distributed systems. In
Proceedings of the Twelfth European Conference on Computer Systems, EuroSys "17,
page 328-343, New York, NY, USA, 2017. Association for Computing Machinery.
Sishuai Gong, Deniz Altinbiiken, Pedro Fonseca, and Petros Maniatis. Snowboard:
Finding kernel concurrency bugs through systematic inter-thread communication
analysis. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP 21, pages 66—-83, New York, NY, USA, 2021. Association for
Computing Machinery.

Sishuai Gong, Dinglan Peng, Deniz Altinbiiken, Pedro Fonseca, and Petros Ma-
niatis. Snowcat: Efficient kernel concurrency testing using a learned coverage
predictor. In Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP ’23, page 35-51, New York, NY, USA, 2023. Association for Computing
Machinery.

Sishuai Gong, Wang Rui, Deniz Altinbiiken, Pedro Fonseca, and Petros Maniatis.
Snowplow: Effective Kernel Fuzzing with a Learned White-box Test Mutator, page
1124-1138. Association for Computing Machinery, New York, NY, USA, 2025.
ISO/IEC JTC1 SC22 WG21 P0124R7. Linux-Kernel Memory Model. 1SO, Geneva,
Switzerland, 2017.

Dae R. Jeong, Kyungtae Kim, Basavesh Shivakumar, Byoungyoung Lee, and Insik
Shin. Razzer: Finding kernel race bugs through fuzzing. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 754-768, New York, NY, 2019. IEEE Press.

[35

[39

[40

=
&

~
=

[48

[49

[50

[51

Sishuai Gong, Chih-En Lin, Kevin Wu, Edwin Lu, and Pedro Fonseca

Dae R Jeong, Byoungyoung Lee, Insik Shin, and Youngjin Kwon. Segfuzz: Segmen-
tizing thread interleaving to discover kernel concurrency bugs through fuzzing.
In 2023 IEEE Symposium on Security and Privacy (SP), pages 2104-2121. IEEE
Computer Society, 2023.

Andrey Konovalov. Coverage-guided usb fuzzing with syzkaller. Talk, Offensive-
Con, Berlin. Feb, 2019.

Chao Li, Rui Chen, Boxiang Wang, Zhixuan Wang, Tingting Yu, Yunsong Jiang,
Bin Gu, and Mengfei Yang. An empirical study on concurrency bugs in interrupt-
driven embedded software. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis, ISSTA 2023, page 1345-1356, New
York, NY, USA, 2023. Association for Computing Machinery.

Congyu Liu, Sishuai Gong, and Pedro Fonseca. Kit: Testing os-level virtualization
for functional interference bugs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 2, ASPLOS 2023, page 427-441, New York, NY, USA, 2023.
Association for Computing Machinery.

Lanyue Lu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and Shan Lu. A
study of linux file system evolution. In 11th USENIX Conference on File and Storage
Technologies (FAST 13), pages 31-44, Berkeley, CA, 2013. USENIX Association.
Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mis-
takes: A comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XIII, pages 329-339,
New York, NY, USA, 2008. Association for Computing Machinery.

Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica,
22(3):276-282, 2012.

Paul McKenney. The rcu api, 2019 edition, 2019.

Paul E. McKenney. Is parallel programming hard, and, if so, what can you do
about it?, 2025.

Ingo Molnar and Arjan van de Ven. Runtime locking correctness validator.
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt, 2022.
Gary Lawrence Murphy, Richard Sevenich, Tim Waugh, Red Hat UK, Juan-
Mariano de Goyeneche, Manuel J Petit de Gabriel, Tom Lees, GNU Debian,
Richard West, Christian Poellabauer, et al. The linux kernel. Resource, 2000:000.
Tapti Palit and Pedro Fonseca. Kaleidoscope: Precise invariant-guided pointer
analysis. In Proceedings of the 29th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3, ASPLOS 24,
page 561-576, New York, NY, USA, 2024. Association for Computing Machinery.
Nicolas Palix, Gaél Thomas, Suman Saha, Christophe Calveés, Julia Lawall, and
Gilles Muller. Faults in linux: ten years later. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, page 305-318, New York, NY, USA, 2011.
Association for Computing Machinery.

Hui Peng and Mathias Payer. Usbfuzz: A framework for fuzzing usb drivers
by device emulation. In Proceedings of the 29th USENIX Conference on Security
Symposium, SEC’20, USA, 2020. USENIX Association.

Nicholas Piggin. powerpc/watchdog: Fix missed watchdog reset due to memory
ordering race, 2021.

Alexander Potapenko, Dmitry Vyukov, Kees Cook, Marco Elver, and Paul McKen-
ney. Kernel sanitizers office hours. Ipc "24, 2024.

Matthew J. Renzelmann, Asim Kadav, and Michael M. Swift. SymDrive: Testing
drivers without devices. In 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 12), pages 279-292, Hollywood, CA, October 2012.
USENIX Association.

Jianjun Shi, Weixing Ji, Yizhuo Wang, Lifu Huang, Yunkun Guo, and Feng Shi.
Linux kernel data races in recent 5 years. Chinese Journal of Electronics, 27(3):556—
560, 2018.

Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding real-
world concurrency bugs in go. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 865-878, New York, NY, USA, 2019. Association for Computing
Machinery.

Dmitry Vyukov. syzbot: automated kernel testing, 2018.

Jie Wang, Wensheng Dou, Yu Gao, Chushu Gao, Feng Qin, Kang Yin, and Jun Wei.
A comprehensive study on real world concurrency bugs in node.js. In 2017 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 520-531, New York, NY, 2017. IEEE, IEEE Press.

Todd Warszawski and Peter Bailis. Acidrain: Concurrency-related attacks on
database-backed web applications. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 5-20, 2017.

Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. Krace: Data race
fuzzing for kernel file systems. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1643-1660, New York, NY, 2020. IEEE, IEEE Press.

Vinay Kumar Yadav. net/tls: fix race condition causing kernel panic, 2020.
Junfeng Yang, Ang Cui, Sal Stolfo, and Simha Sethumadhavan. Concurrency
attacks. In 4th USENIX Workshop on Hot Topics in Parallelism (HotPar 12), 2012.
Zuoning Yin, Ding Yuan, Yuanyuan Zhou, Shankar Pasupathy, and Lakshmi
Bairavasundaram. How do fixes become bugs? In Proceedings of the 19th ACM

https://lwn.net/Articles/1023646/
https://lwn.net/Articles/1023646/
https://lwn.net/Articles/799218/
https://lwn.net/Articles/793253/
https://lwn.net/Articles/185666/
https://lwn.net/Articles/321663/
https://lwn.net/Articles/321663/
https://lwn.net/Articles/889475/
https://lwn.net/Articles/889475/
https://www.kernel.org/doc/Documentation/locking/lockdep-design.txt

A Comprehensive Study of Concurrency Bugs in the Linux Kernel ICSE °26, April 12-18, 2026, Rio de Janeiro, Brazil

SIGSOFT Symposium and the 13th European Conference on Foundations of Software [61] Ming Yuan, Bodong Zhao, Penghui Li, Jiashuo Liang, Xinhui Han, Xiapu Luo,
Engineering, ESEC/FSE 11, page 26-36, New York, NY, USA, 2011. Association and Chao Zhang. Ddrace: finding concurrency uaf vulnerabilities in linux drivers
for Computing Machinery. with directed fuzzing. In Proceedings of the 32nd USENIX Conference on Security

Symposium, SEC "23, USA, 2023. USENIX Association.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Bug selection
	2.2 Bug analysis
	2.3 Threats to validity

	3 Concurrency bug manifestation conditions
	3.1 Interrupt-based concurrency bugs
	3.2 Hardware-dependent concurrency bugs
	3.3 Subsystem-specific concurrency bugs

	4 Concurrency bug root causes and patterns
	4.1 Atomicity and order violations
	4.2 Deadlocks
	4.3 Number of threads involved
	4.4 Synchronization misuse

	5 Concurrency bug discovery
	6 Concurrency bug repair
	6.1 Bug persistence time
	6.2 Patch complexity

	7 Discussion
	8 Related work
	9 Conclusion
	Acknowledgments
	References

