
KRR: Efficient and Scalable Kernel Record Replay

Tianren Zhang
SmartX

Sishuai Gong
Purdue University

Pedro Fonseca
Purdue University

Abstract
Modern kernels are large, complex, and plagued with bugs.
Unfortunately, their large size and complexity make kernel
failures very challenging for developers to diagnose since
failures encountered in deployment are often notoriously diffi-
cult to reproduce. Although record-replay techniques provide
the powerful ability to accurately record a failed execution
and deterministically replay it, enabling advanced manual and
automated analysis techniques, they are inefficient and do not
scale with modern I/O-intensive, concurrent workloads.

This paper introduces KRR, a kernel record-replay frame-
work that provides a highly efficient execution recording
mechanism by narrowing the scope of the record and replay
boundary to the kernel. Unlike previous record-replay whole-
stack approaches, KRR adopts a split-recorder design that
employs the guest and the host to jointly record the kernel
execution. Our evaluation demonstrates that KRR scales effi-
ciently up to 8 cores, across a range of different workloads,
including kernel compilation, RocksDB, and Nginx. When
recording 8-core VMs that run RocksDB and kernel compi-
lation, KRR incurs only a 1.52× ∼ 2.79× slowdown com-
pared to native execution, while traditional whole-VM RR
suffers from 8.97× ∼ 29.94× slowdown. We validate that
KRR is practical and has a broad recording scope by repro-
ducing 17 bugs across different Linux versions, including 6
non-deterministic bugs and 5 high-risk CVEs; KRR was able
to record and reproduce all but one non-deterministic bug.

1 Introduction

Modern kernels are particularly challenging to build correctly
because they are huge and exceptionally complex. As a result
of growing size and complexity, they are plagued with bugs.
The Linux kernel, for example, has more than 30 million
lines of source code and Syzkaller alone, a popular automated
testing tool, found 3736 bugs in a 3-year span [55]. While
many kernel bugs are routinely found through code reviewing
and testing, many others end up finding their way to stable

releases, leading to production failures in real-world deploy-
ments with drastic consequences for users [45–48, 51, 52, 65].

Record-replay (RR) techniques [40,42,49,53,56,60,64,68]
are particularly effective at helping developers diagnose non-
deterministic and complex failures like those often found in
kernels. At a high level, RR techniques rely on instrument-
ing a program (or VM) to record all input events that impact
its execution into a trace such that, during a replay run, the
same input can be fed to the program (or VM), reproducing
the execution with 100% accuracy. This allows repeatable
executions of the failure and the use of sophisticated offline
analysis on the replayed execution, such as reverse debug-
ging [43] and automated and expensive techniques [40]. Be-
cause of its accuracy, RR techniques are particularly useful
for the most complex bugs. However, despite its appeal and
decades of research on record-replay techniques, even the
most well-developed record-replay frameworks, like Mozilla
RR [56], tend to have very high overheads, particularly under
multi-threaded or multi-core environments where the over-
head factor exceeds the thread/core count [49, 56, 60].

This work presents KRR, an efficient and scalable record-
replay framework that is specially designed to assist kernel de-
velopers in diagnosing kernel failures [32, 46, 47]. KRR aims
to support modern data center workloads and multi-core VMs
with significantly lower overheads than existing approaches.
Like other approaches, KRR replays executions at the VM
level; however, unlike existing approaches, KRR only records
and replays the kernel execution. This approach departs from
existing approaches in that the record and replay boundary
is a slice of the software stack—the kernel—introducing sig-
nificant technical challenges and an opportunity for major
scalability and performance improvements.

The design of KRR relies on two key observations about
modern data center workloads and the state of the art of RR
techniques. First, modern workloads are increasingly con-
current; hence, supporting multi-core executions is critical
even for emerging data center paradigms like serverless com-
puting. Unfortunately, existing RR tools for x86 VMs have
overhead factors that exceed the number of cores for gen-



eral workloads [42, 60]. For instance, recording a 2-core VM
adds a 2.3-3.5× overhead [60]. Second, data center work-
loads are increasingly distributed and I/O intensive, a trend
that has motivated the thriving field of kernel-bypassing tech-
niques [33, 58, 59, 72]. Unfortunately, the higher the VM I/O,
the more event data needs to be recorded by existing whole-
VM RR approaches, increasing recording overheads. Hence,
a practical RR tool should support well workloads that are
concurrent and I/O intensive, but these workloads are exactly
the less well supported by current RR techniques.

This work turns this problem on its head by precisely target-
ing and exploiting these workloads’ properties – concurrency
and I/O intensity. Since data centers increasingly use kernel-
bypassing techniques to avoid kernel overheads, the bulk of
the VM input is no longer kernel input. Hence, recording only
the kernel input under these settings can reduce the input that
needs to be recorded to replay the kernel when compared with
a whole-VM replay. Second, under typical workloads, and
even more so under kernel-bypassing workloads, cores are
most often not executing kernel code; they are typically exe-
cuting application code. Therefore, restricting the schedule
recording to the kernel execution can significantly reduce the
scalability impact on end-to-end user workloads. While com-
bining multi-core VMs and kernel bypass is expected in de-
manding scenarios, our findings show that the KRR approach
offers significant performance improvement even when only
one property is present, underscoring its particularly broad
utility.

Traditional whole-VM RR requires hypervisor modifica-
tions to trap all hardware-level inputs. In contrast, KRR nar-
rows the record-replay boundary to the kernel, recording
software inputs such as system calls and user data (e.g., via
copy_from_user) alongside hardware inputs. Although this
kernel-focused approach appears simple, it introduces fun-
damental challenges that require a novel split-recorder ar-
chitecture. KRR divides recording responsibilities between
the hypervisor recorder and the in-guest recorder. The in-
guest recorder captures software inputs to the kernel and hard-
ware inputs that bypass the hypervisor, while the hypervisor
recorder handles remaining hardware events. This design ad-
dresses four key challenges: First, KRR must record more
event classes than VM-RR, managing two recording inter-
faces rather than one. Second, it must coordinate cross-layer
event recording to establish a total order without costly VM
exits. Third, the kernel must serialize itself and record seri-
alization order without hypervisor involvement to avoid VM
exits. Fourth, since replay execution is a subset of recorded
execution, injecting non-deterministic events requires a new
mechanism beyond traditional instruction counts. All these
challenges require a careful design of both the record and
replay mechanisms.

We implemented KRR on KVM/QEMU and Linux, along
with a comprehensive validation mechanism to check cor-
rectness through testing. We evaluate KRR against tradi-

tional whole-VM RR using real-world applications, including
RocksDB and kernel compilation workloads. Our results show
that KRR has high recording efficiency and scalability. For
example, when recording 8-core VMs that run RocksDB and
kernel compilation, KRR incurs only a slowdown of 1.52×∼
2.79×—significantly outperforming traditional whole-VM
RR, which introduces slowdowns of 8.97× ∼ 29.94×. Fur-
thermore, under kernel-bypass configurations, KRR achieves
even lower overhead by allowing guest user-space applica-
tions to communicate directly with the hardware, incurring
no recording cost on these data paths. Thus, in a 4-core VM
running the Redis benchmark, KRR incurs at most 1.05×
runtime overhead on throughput, whereas in a 2-core VM run-
ning RocksDB, the slowdown ranges from 1.17× to 1.26×.
Single-core workloads with kernel-bypass similarly benefit
from KRR ’s efficient recording design.

To evaluate the effectiveness of recording real-world bugs,
we applied KRR to reproduce 17 bugs across different Linux
versions, including 6 non-deterministic bugs and 5 high-risk
CVEs. KRR was able to record and reproduce all but one non-
deterministic bug, showing that KRR is effective at recording
and replaying complex and serious real-world kernel bugs,
including many non-deterministic bugs.

2 Sliced Record Replay

Record-replay techniques record executions and replay them
at a later time, allowing developers to conduct postmortem
analysis of faulty executions. Record-replay approaches have
been applied at the level of applications and virtual machines.
In practice, this approach records all nondeterministic inputs
into a trace log and feeds them into another execution, repro-
ducing the control and data path of the original execution,
while giving an opportunity for developers to retroactively
apply powerful analyses and debugging techniques. These
analyses are instrumental to help developers diagnose the
most complex failures, such as failures where the root cause
is distant from the failure point [37, 40, 73].

Key observations. This work makes two key observations.
First, although the kernel is often the most complex system
running on a machine, it is not the one that is most often
running on a given core. Second, when data-intensive appli-
cations use kernel-bypassing, input provided to the kernel
can be significantly smaller than the input provided to the
machine. Combined, these observations make us question
the common approach to recording kernel executions, which
relies on recording the non-deterministic inputs of the whole
VM. Instead of recording the entire VM execution, we pos-
tulate that recording only the kernel execution, i.e., a slice
of the stack, may allow us to achieve much better recording
performance. However, as explained next, this represents a sig-
nificant change to record-replay techniques, which currently
assume a single interface for the record and replay boundary



Kernel

Application

Bare Metal /
Hypervisor

Application

Hypervisor

KernelKernel

Application

Hypervisor

Application RR Whole-machine RR Kernel RR

Figure 1: Traditional RR approaches and Kernel RR approach.
Record-replay boundary is highlighted in bold.

(e.g., the system call or machine interface), posing unique
challenges to the tool design.

2.1 Goals and Assumptions

We aim to build a record-replay framework that (a) records
kernel executions, (b) ensures matching, functionally-accurate
kernel replays, and (c) achieves high recording efficiency.
Our goal is to drastically reduce the recording overhead of
traditional record-replay frameworks, especially in multi-core
environments, to enable recording all executions of large-scale
workloads.

Non-goals. Replaying efficiency beyond ensuring sufficient
speed for practical debugging is not a goal of this work. Every
replayed execution has to be recorded, but often only some
recorded executions – those that happen to trigger failures
– are replayed. Replaying application executions is not our
focus since we aim to help kernel developers find and diag-
nose kernel bugs. We assume that the kernel is designed to
work correctly regardless of the input provided by applica-
tions, hence determining why applications provide certain
input that leads to kernel failures is out of the scope of this
work.

Assumptions. Since we aim to help kernel developers fix
kernel bugs, we assume that they can modify the kernel. Fur-
thermore, we assume that the kernel executions run on a
virtualized environment, which is typical in the cloud and
datacenters, but that developers or data center providers can
modify the hypervisor, which is a standard assumption for
VM-based techniques. Our design is architecture-agnostic,
although our implementation and discussion targets x86 due
to its wide adoption in data centers.

2.2 Efficient and Scalable Kernel RR

Accurately replaying executions requires recording all non-
deterministic inputs of a given execution. In practice, this
means that all the explicit inputs (i.e., inputs provided by
users) and implicit inputs (e.g., program schedules) need to
be recorded such that they can later be fed into the program,
ensuring the same execution behavior during replay.

To record and replay kernel executions, the state-of-the-
art approach records the whole system execution (Whole-
machine RR in Figure 1). In practice, this is done with a
modified hypervisor that records all the VM (implicit and
explicit) inputs. By running the target kernel inside a VM,
the record and replay boundary becomes the entire VM. In
contrast to the prior approach, KRR restricts the recording and
replaying boundary to the guest kernel from the entire VM
(Kernel RR in Figure 1), therefore avoiding the unnecessary
cost of recording the guest applications.

At first glance, it may appear that by recording a smaller
layer of the software stack (i.e., the kernel layer), the recording
overheads become smaller. But the size of the layer does
not directly determine the costs. In fact, reducing the RR
boundary to the kernel could increase costs because a sliced
recording that only targets the kernel would require recording
(a) the hardware input provided to the kernel (e.g., data read
from the disk or network and interrupt timings) and (b) the
input provided by applications to the kernel (e.g., system calls
invoked by the applications). Whereas recording the VM
execution would only require recording the former source
of (explicit) inputs. Despite this additional cost to the sliced
RR approach, there are two factors that make KRR not just
viable but significantly more efficient and scalable than whole-
machine RR.

Adoption of kernel-bypass workloads. Because datacenter
workloads increasingly use kernel bypassing for higher per-
formance, the input provided to the kernel can actually be
smaller than the input to the machine. Hence, under kernel-
bypassing workloads, restricting RR to the kernel boundary
can reduce the number of recorded events, thereby increasing
recording efficiency.

High cost of schedule recording. The typical Achilles heel
of RR techniques is parallelism. The few RR systems that
support multi-core machines (or multi-thread applications)
on commodity hardware primarily do so by serializing the
execution of multiple cores (or threads) [56], which cancels
the parallelism benefits, or recording memory access order-
ings, which has comparable or higher costs [42, 60]. Thus,
the state-of-the-art RR techniques for x86 have overheads
that exceed the number of cores for general workloads (e.g.,
2.3-3.5× overhead for a 2-core VM [60]), canceling the per-
formance benefits of using multi-core machines. Sliced RR
that selectively targets the kernel can drastically mitigate this
cost, at the end-to-end level, by only serializing the execu-
tion of the kernel while allowing full application parallelism.
Since in many workloads, the vast majority of the CPU time
is spent in user mode, sliced RR can scale kernel recording
to several cores on commodity hardware with low CPU over-
head. It is worth noting that despite the use of serialization
to handle parallelism, as discussed later (§3.3), fine-grained
serialization is effective even at recording failures that trigger
non-deterministic, including important classes of concurrency



Guest Kernel

Hypervisor
RecorderHypervisor 

Event
Trace

syscall except. memory
access

interrupt

Guest UserspaceKernel-bypass
app

Initial Kernel
State

page table
update

Other
app

Kernel Schedule

Guest Recorder

I/O

Figure 2: KRR Split Recorder Architecture.

bugs.

3 KRR Design

KRR’s unique recording boundary imposes two major de-
sign challenges. First, while existing record-replay systems
focus on either the user-space (application RR) or hardware
interface (whole-machine RR), KRR must simultaneously
record both interfaces, as illustrated in Figure 1. This dual-
interface recording requirement creates significant architec-
tural challenges. Traditional approaches can record from a
higher-privilege level—using the kernel to record the appli-
cation, or the hypervisor to record the VM. However, neither
interface provides a good vantage point to effectively record
both interfaces given the limited visibility from each interface.
The second challenge lies in the recording efficiency. Because
the kernel frequently interacts with user space and hardware
and often with fine granularity, intercepting communications
over these two interfaces can be expensive, particularly when
recording from the hypervisor. Naively recording even just
some event types could cause frequent VM exits or require
expensive introspection mechanisms that we cannot afford.

To address these challenges, KRR employs a split-recorder
design (Figure 2) that uses an in-guest recorder and an in-
hypervisor recorder to collaboratively record the kernel ex-
ecution. This design enables KRR to record both interfaces
effectively and with low overhead. Together, the two recorders
record all non-deterministic events that impact the kernel ex-
ecution and output a recorded trace of events in total order,
allowing KRR to accurately reproduce the slice of the kernel
execution during replay by injecting the recorded events one
by one. Specifically, KRR records three types of events: (1)
all inputs provided to the kernel (§3.1 and §3.2), (2) the kernel
schedule and other non-determinism (§3.3), and (3) the initial
state of the kernel (§3.4).

3.1 Kernel Input from User-space
KRR implements an in-guest recorder that monitors all in-
put, both directly and indirectly, provided to the kernel by

applications. The guest recorder runs in the guest kernel and
intercepts the kernel’s accesses to software input. Fortunately,
the kernel interface is generally very well defined for maintain-
ability and security reasons, making it practical to determine
the source code locations where the kernel receives input. The
in-guest recorder handles several sources of software input.

System Calls. Applications invoke a system call by request-
ing the index of the desired call and passing the respective
arguments. Thus, correctly replaying the system call requires
recording the requested call index and the arguments. To do
so, the guest recorder monitors the common entry point of
system call handlers. When a system call request is received,
the guest recorder accesses the CPU registers to get the call
index and parameters.

User-Memory Accesses. The kernel can read user-space
memory to fetch application structures, buffers, and for other
reasons, which therefore constitutes another type of input
event for the guest recorder to monitor. For instance, to fulfill
a write() system call, the kernel needs to read the user-space
memory to fetch the contents to write. In abstract, monitoring
user-memory accesses is challenging because the kernel can
make the read accesses at arbitrary points during its execution.
An interesting observation that makes our solution particu-
larly feasible is that modern kernels treat user-memory reads
as security-sensitive operations due to their potential as attack
vectors. As a result, such reads are performed through a small
set of internal APIs that have been thoroughly reviewed and
hardened with security features such as the x86 SMAP ex-
tension. This design property allows KRR to reliably record
user-memory reads by instrumenting well-defined API func-
tions such as copy_from_user and get_user [30]. When the
kernel reads data from user-space through the instrumented
functions, KRR inspects the corresponding destination kernel-
space memory to record the copied content. Importantly, KRR
does not access the user-space memory directly for recording,
thereby avoiding consistency issues such as double reads (e.g.,
TOCTOU [29]).

Additionally, the kernel’s execution could be affected by
inputs from memory that is shared between the kernel and
user-space. A typical example is io_uring [15], which uses
shared circular queues for asynchronous I/O operations. With
io_uring, the kernel directly accesses the submission queue
in the shared memory region, which the user-space can access
and modify at the same time. KRR records this type of kernel
input by instrumenting kernel reads to both the submission
queue and its entries in the guest recorder, ensuring that user
inputs via this shared memory are captured deterministically.
This approach is also applied to other mechanisms, such as
inter-process communication (process_vm_readv), and can
be extended to other shared-memory inputs that affect kernel
behavior.

Page Table Updates. In addition to the explicit inputs de-
scribed above, user-space execution can implicitly influence



kernel behavior through changes to the page table state.
Specifically, when applications access memory, these accesses
may update the accessed and dirty bits in the corresponding
page table entries. These updates, in turn, can affect the ker-
nel memory management, as the kernel relies on those bits to
make decisions such as page replacement. To record the page
table entry update, KRR instruments kernel accesses to the en-
tries and records their exact values. This approach is generic
and can record other forms of implicit inputs if needed. In
practice, our comprehensive validation and evaluation (§4.1,
§5) suggest that page table state changes are the only typi-
cal implicit input provided by processes, and recording these
changes is sufficient to ensure accurate replay.

3.2 Kernel Input from Hardware

Hardware inputs (interrupts, I/O read, and device DMA) are
primarily recorded by the hypervisor recorder, while non-
deterministic instructions and exceptions are recorded by the
guest to avoid introducing VM exits.

Interrupts and Exceptions. The hypervisor recorder inter-
cepts every interrupt to record the interrupt type (i.e., vector
number), timing (§3.2.1), instruction pointer (RIP), and all
general-purpose registers that may be accessed during inter-
rupt handling. For example, RCX register is accessed to iden-
tify the position within repeating string instructions [42, 60],
and RIP is accessed to handle restartable sequences [18].

Because KRR only records the kernel slice of the execu-
tion, exception handling, such as those caused by division
by zero from user-space, are no longer deterministic events
in every situation. In particular, exceptions triggered by ap-
plications need to be recorded and injected during replay by
KRR. For each exception, KRR records the exception num-
ber, all general-purpose registers, and any additional machine
state required by each specific exception handler. For instance,
when recording page faults on x86_64, the guest recorder ad-
ditionally records the faulting memory address and error code
stored in the stack memory.

I/O Operations. KRR records the data read by the kernel
from hardware devices through port I/O (i.e., IN and OUT

instructions), memory-mapped I/O (MMIO), and DMA ac-
cesses. Since they are handled by the host hypervisor, KRR
uses the hypervisor recorder to monitor these events. When
an I/O read request is intercepted, the hypervisor records it
only if initiated by the kernel. By excluding I/O requests from
guest user-space applications, KRR significantly improves
recording efficiency for kernel-bypass workloads (§5.2).

Other Non-deterministic Instructions. Because some in-
structions produce non-deterministic results, KRR needs to
record their results to ensure correct replay. On x86, this in-
cludes instructions such as RDTSC, RDTSCP, RDSEED, and RDRAND.
While a common approach is to trap and record them from
the host hypervisor [60, 64], KRR instead records them with

the guest recorder to avoid expensive VM exits. This shows
another advantage of choosing the kernel as the record bound-
ary – it would be impractical to ensure that these instructions
are consistently recorded for every application in a VM-RR
approach by modifying all applications, since there is no intra-
VM trap mechanism for these instructions in x86. However,
it is practical to manually modify a single system (the kernel,
in our case) to intercept them.

3.2.1 Asynchronous Event Timing

Unlike other hardware inputs, interrupts and DMA accesses
are asynchronous events. Thus, their timing has to be recorded
precisely so that KRR can replay them at the exact same point
observed during recording. To achieve this, KRR leverages
x86 kernel-mode-only hardware counters to track the number
of executed kernel instructions during recording. When the
interrupt or DMA event happens, KRR records the counter
value as its timing signature, enabling accurate replay by
injecting the event at the same instruction count.

To prevent conflicts with the guest kernel over hardware
performance counter usage, KRR takes advantage of the mul-
tiple counters available on modern processors (e.g., Intel pro-
cessors typically provide four programmable counters per
core [13]). KRR reserves one counter for its exclusive use,
leaving the remaining counters accessible to the guest kernel.
This is achieved by intercepting the CPUID instruction’s output
to mask the reserved counter, thereby making it invisible to
the guest.

3.3 Kernel Schedule

A common approach to ensure accurate record and replay on
concurrent software is to serialize the multi-thread execution—
allowing only one thread to run at a time—thereby resolving
data races and other schedule-non-determinism during record-
ing. However, while this approach guarantees correct replay,
it can impose substantial performance overhead by preventing
parallelism. To address this limitation, KRR takes advan-
tage of its reduced recording boundary. Since KRR records
the kernel execution exclusively, it only has to serialize the
concurrent kernel execution, while still allowing user-space
threads to run in parallel.

In addition, unlike other approaches that serialize at the
hypervisor-level [44], KRR serializes the execution from the
guest kernel, avoiding expensive VM exits on every kernel-
user space transition. KRR uses a special-purpose spinlock
from the guest kernel, ensuring that only one vCPU core
can execute in kernel mode. Although this approach may
seem simple, not using the hypervisor to control the schedule
requires a careful design, as discussed next.

Replay-Coherent (RC) Spinlock. While the serialization
spinlock is integrated into the guest kernel, its execution



should not be replicated during replay since it is, concep-
tually, a component of the recorder and it would slow re-
play. Even more importantly, a normal spinlock is itself non-
deterministic, meaning that the spin count (instructions exe-
cuted by the spinlock) and its outcome depend on the schedule.
If left unhandled, the outcome of a normal spinlock would not
match across record and replay. Furthermore, even if the out-
come of the spin lock is recorded, the spin count difference
across runs would make the instruction count inconsistent
across runs, preventing KRR from using the instruction count
to decide when to inject interrupts and other asynchronous
events that are timing-dependent (§3.2). After exploring sev-
eral approaches to address this problem, including relying on
expensive VM exits, we concluded that a simple modification
to the spinlock is sufficient to solve this problem. KRR intro-
duces a new spinlock design, the RC spinlock, that counts the
number of cycles (instructions executed) before it is acquired
as well as the acquisition ordering, which KRR records as
events. This allows KRR to enforce the same ordering and
adjust the instruction count to match the recorded values dur-
ing reply, thereby reproducing the exact multi-threaded kernel
execution

Deadlock Prevention. KRR manages kernel execution seri-
alization through its RC spinlock. The vCPU acquires this
lock when (a) entering kernel mode (through system calls,
interrupts, or exceptions) or (b) waking from an idle state, and
releases it when (a) returning to user-space or (b) entering the
idle state.

However, this basic locking scheme can lead to deadlocks.
For example, when a thread holding the RC spinlock waits
for an internal kernel lock that is owned by another thread,
which in turn is waiting for the RC spinlock. To prevent
such deadlocks, KRR adds another acquisition/release point:
the kernel releases the RC spinlock before acquiring certain
internal locks (including the CSD lock [17] and spinlock) and
reacquires it afterward.

When multiple vCPUs wait for the same internal lock, KRR
applies a similar strategy as used for the RC spinlock - record-
ing the acquisition ordering to ensure correct replay. Since the
waiting time at internal locks is non-deterministic, KRR uses
hypercalls to synchronize instruction counts between record
and replay runs. While hypercalls incur VM exits, these syn-
chronization points are not common during normal kernel
execution, resulting in a low performance impact.

Bug Recording Scope. Like other practical record-replay
tools, KRR affects executions through subtle changes to the
timing of events due to instrumentation overheads or the seri-
alization mechanism, making some failures potentially harder
or easier to trigger. Despite the use of serialization, KRR
can record concurrency bugs, as our experience shows. This
is possible because KRR allows concurrency, although at a
coarser grain than native executions, through interrupts and
context switches. To empirically assess KRR’s ability to re-

produce real-world bugs, we evaluated it on a diverse set of
Linux kernel bugs (details in §5.3). The results show that
KRR successfully reproduces 16 out of 17 randomly-sampled
bugs, encompassing 5 out of 6 non-deterministic bugs and all
five tested kernel CVEs. This validates its effectiveness for
a broad spectrum of real-world kernel problems, including
several concurrency-related bugs. §6 discusses further the
scope of the recorded executions.

3.4 Initial Kernel State
KRR allows users to start recording the guest kernel execu-
tion at arbitrary points during the VM lifetime. This selective
recording capability is particularly useful in performance-
critical cases where only specific execution periods are
recorded due to lower overhead tolerance (e.g., during in-
tensive workloads).

Once recording starts, KRR takes a memory snapshot of
the VM. Unlike traditional VM-RR, KRR requires only a
kernel memory snapshot for replay, presenting a significant
optimization potential. Snapshotting only kernel memory, in-
stead of the entire VM’s memory, can substantially improve
snapshot efficiency and reduce storage costs, particularly for
VMs with large amounts of user memory. This snapshot is
then used in the replay to ensure that the event trace is applied
to a kernel execution that starts from the same initial state
(§3.5). Currently, KRR uses synchronous snapshotting where
the guest’s execution is paused during snapshot creation to
ensure state consistency. However, future work could adopt
techniques, such as asynchronous snapshotting [1] and effi-
cient fork, like on-demand fork [74] and others [69], to further
reduce the performance impact of snapshotting operations.

3.5 Replayer
During replay, KRR reconstructs kernel execution through
a carefully orchestrated process. KRR first loads the VM
snapshot and follows the recorded event trace to recover the
original execution environment. The system employs sev-
eral techniques to ensure identical execution: vCPU thread
scheduling based on logged execution order, memory state
recovery using VM breakpoints to intercept memory accesses
to user-space memory, hardware input replication during I/O
operations, and precise timing control through instruction
counting to inject asynchronous events at the exact points
they occurred during recording.

Replay Debugging. Since performance is less critical during
replay, we implemented our KRR prototype replayer using
the QEMU emulator, which has the advantage of simplifying
introspection and providing a convenient kernel debugging
environment through GDB integration. Our implementation
allows developers to use powerful debugging features includ-
ing breakpoints, watchpoints, and automation scripts [16] to
analyze the kernel behavior during replay. Moreover, other



binary analysis techniques [37, 40, 61] can be integrated into
KRR, allowing developers to track memory accesses, monitor
register changes, and analyze execution paths at instruction-
level granularity.

Reverse Debugging. Reverse debugging [11] enables devel-
opers to navigate backward through a program’s execution
history to examine how a particular state was reached. This
capability is invaluable for diagnosing complex bugs whose
root causes are difficult to pinpoint with forward-stepping
debuggers alone.

To implement reverse debugging, KRR augments its stan-
dard kernel replay by also periodically taking VM snapshots,
each tagged with the instruction count. To start reverse de-
bugging, e.g., a backwards instruction step, KRR performs a
two-stage process. First, it identifies and loads the last VM
snapshot that was captured before the target backward point.
Second, it replays the execution forward from the snapshot,
using the recorded event trace, until the exact desired execu-
tion point is reached. This approach is conceptually similar
to QEMU’s native reverse debugging [20].

However, robust reverse debugging for multi-core VMs
presents challenges not addressed by existing approaches [21,
40]. In multi-core systems, each vCPU progresses indepen-
dently, making a single instruction counter insufficient to
uniquely define the system state for consistent reverse execu-
tion. To overcome this, KRR introduces a multi-core execution
coordinate: a vector of per-vCPU instruction counts captured
during replay. Both snapshots and past breakpoints are tagged
with these coordinates during replay. During a rollback to the
last breakpoint, KRR loads the closest prior snapshot and re-
plays forward until the target coordinate is reached, restoring
both VM state and replay progress to ensure consistency.

4 Implementation

We implement KRR based on Linux-KVM (5.17.5) and
QEMU (7.0.0). We develop the guest recorder on Linux 6.1.0
and then port it to different kernel versions, ranging from 5.10
to 6.1 (§5.3). The modifications to KVM, QEMU, and the
guest Linux are around 1.2k, 4.5k, and 1.2k lines of C code,
respectively.

Guest Recorder. KRR implements a kernel recording li-
brary with 16 APIs that record system calls, exceptions, user-
memory access, page table accesses, non-deterministic in-
structions, and RC spinlock operations. The library, imple-
mented in about 1.2K LoC C code, is used to instrument 37
kernel source files for recording these events. The recording
library also facilitates compatibility and portability across
kernel versions. When using KRR to reproduce known kernel
bugs (§5.3), we are able to support 13 unique kernel versions
ranging from 5.10 to 6.1. Supporting a new kernel version
typically requires less than 30 minutes to apply our patch files
and resolve code conflicts.

Hypervisor Recorder. We implement the hypervisor recorder
in KVM/QEMU to capture hardware-related events. The im-
plementation consists of modifications to KVM (0.8K LoC)
and QEMU (1.2K LoC), providing 5 instrumentation inter-
faces for recording. In total, we modify 7 files across the
KVM/QEMU codebase. We instrument KVM’s interrupt in-
jection function to record interrupt information and extend
PIO & MMIO emulation functions to record I/O read results.

Hypervisor recorder records data from both the emulated
disk and network interfaces, with each requiring different han-
dling strategies due to their distinct access patterns. For disk
I/O, KRR records data written to device DMA memory re-
gions and pairs each DMA buffer chunk with its triggering
disk I/O instruction (e.g., IDE DMA read command). This
pairing, along with the timing information, enables precise
injection of recorded DMA data during replay when the ker-
nel executes the corresponding I/O instruction. Network I/O
presents a unique challenge due to Linux’s NAPI mecha-
nism [19]. NAPI allows concurrent access to the network
ring buffer by both the kernel and the device, creating po-
tential data races. KRR addresses this by trapping the vCPU
in kernel mode before the device writes to the network ring
buffer, similar to VMware FT’s network I/O synchroniza-
tion approach [63]. During this trap, KRR records both the
data written to the ring buffer and the current instruction
count, enabling accurate replay of network inputs. For kernel-
bypass devices, KRR provides a QEMU parameter that allows
users to specify which device inputs should be ignored during
recording.

Atomic and Ordered Event Recording. Because KRR uses
both the guest kernel and hypervisor recorder to record in-
put events, it is critical that the event trace is updated atomi-
cally and sorted in the correct order (i.e., by occurrence time).
To guarantee atomicity, KRR grants exclusive access to the
event trace only to the RC spinlock owner vCPU. When one
recorder is updating the event trace, KRR disables the inter-
rupt for the guest and pauses the corresponding vCPU core
on which the event happens until the event is recorded into
the trace. By doing so, KRR ensures that only one recorder
can update the event trace at a time.

While KRR serializes kernel execution, interrupts may still
occur concurrently on multiple vCPUs that are in user mode,
making it challenging to order these interrupt events correctly.
KRR’s recorded ordering of RC spinlock acquisitions (§3.3)
ensures these interrupts are properly ordered according to the
serialized execution.

4.1 Validation
We run the test suite from Linux Test Project (LTP) to test
the correctness of our prototype. In the recorded execution, at
every N-th instruction, we log the instruction pointer (RIP),
the instruction counter (i.e., number of executed kernel in-
structions) and all x86_64 registers, including control, general-



purpose, and segment registers. During the replay, we assert
that the replayed execution shows consistent states at every
N-th instruction. We use the value 1K for N by default and
increase it to 32K if too frequent logging causes test timeouts
during recording. Overall, KRR can successfully replay the
kernel execution of 8,156 LTP tests, demonstrating its high
recording accuracy.

5 Evaluation

This section evaluates KRR along the following questions:

RQ1: Can KRR efficiently record multi-core workloads?
(§5.1)

RQ2: What is the recording performance of KRR on kernel-
bypass workloads? (§5.2)

RQ3: Can KRR record/replay complex kernel bugs? (§5.3)

RQ4: What is the storage cost of KRR? (§5.4)

RQ5: What is the replay performance of KRR? (§5.5)

Experimental setup. We evaluate the record/replay perfor-
mance of KRR on the CloudLab platform [3] using instances
of machine c6420, which is equipped with two 16-core Intel
Xeon Gold 6142 CPUs (hyper-threading and cstate disabled),
384 GB RAM, and a dual-port Intel X710 10GbE NIC for
performance. In addition, we evaluate the effectiveness of
KRR in reproducing kernel bugs on a separate machine with
a 2-core Intel i7-7660U CPU and 16GB RAM. We run the
modified Linux kernel 5.17.5 on the host, and 6.1.0 on the
guest in the default recording performance evaluation. For
the bug reproduction in §5.3, we run 13 unique guest Linux
kernel versions ranging from 5.10 to 6.1.

VM-RR. Our evaluation compares the recording performance
between KRR and the whole-machine RR approach(Figure 1).
A direct comparison with prior whole-machine RR implemen-
tations is unfeasible for several reasons. First, some imple-
mentations are proprietary or have been deprecated [42, 64];
thus, they are inaccessible to us. Second, despite our consid-
erable adaptation efforts, the old codebase of some systems
caused compatibility issues on modern hardware [60]. Third,
the other alternatives lack multi-core VM support or critical
hardware-assisted virtualization capabilities, such as KVM,
which are central to our work [21, 40]. Thus, to enable a fair
and relevant comparison, we implemented VM-RR, a whole-
machine RR prototype using the same version of QEMU and
KVM as KRR, which is the fastest implementation we have
access to (§4).

VM-RR differs from KRR in three aspects. First, it uses
the traditional, wider recording boundary: VM-RR captures
all hardware inputs to the VM, including non-deterministic
events (e.g., interrupts), the results of non-deterministic in-
structions, and data from device I/O reads. KRR, in contrast,

must also record inputs from the guest user-space to the kernel
(§3.1) but does not record VM input that bypasses the kernel.
Second is the handling of non-deterministic instructions (e.g.,
RDTSC): VM-RR relies on hypervisor traps to capture their
output, whereas KRR uses its in-guest recorder to log these
values, avoiding expensive VM exits (§3.2). Third, VM-RR
enforces determinism through full-system serialization, al-
lowing only one vCPU to execute at any time. vCPUs are
scheduled via FIFO, each running for up to a 50K instruction
time slice. While this serialization incurs overhead, like it
does in KRR, it is a standard technique in prior determinis-
tic systems [44, 46, 56]. Importantly, our evaluation results
(§5.1.2) demonstrate that VM-RR’s performance overhead
is comparable to that of existing deterministic record-replay
systems on multi-core workloads, affirming its validity as a
representative baseline.

Methodology. To understand the recording overhead of KRR
and VM-RR, we measure the system performance both with
and without recording enabled, using the native execution (no
recording) as the baseline. We conduct multiple trials of each
experiment and report the average result. To ensure consistent
measurements across trials, we clear the host page cache, pin
every vCPU thread to a dedicated physical core, and boot
the VM from scratch between trials. Our evaluation graphs
present both the absolute measurement values and the relative
slowdown caused by recording.

5.1 Recording multi-core workloads
This section evaluates the recording overhead of KRR on
modern applications, with a focus on scalability.

5.1.1 RocksDB

First, we compare KRR and VM-RR on a modern key-value
store, RocksDB [41], using its built-in benchmark suite [2].
We run multi-threaded workloads, aligning the number of
threads with the available vCPU cores, to understand the
recording overhead for concurrent RocksDB operations.

Throughput. Figure 3 illustrates the substantial performance
disparities between VM-RR and KRR when recording multi-
core RocksDB workloads. While all workloads demon-
strate strong multi-core scaling under native execution, their
throughput under VM-RR decreases greatly as the number of
cores increases. Notably, with VM-RR, RocksDB performs
worse on multi-core VMs than on single-core VMs across all
workloads. In contrast, KRR introduces considerably lower
overhead. On single-core VMs, KRR is expected to be slower
than VM-RR because it needs to record userspace inputs
while VM-RR does not (§3.1). However, contrary to this ex-
pectation, VM-RR is observed to be slower than KRR on
certain workloads, despite avoiding userspace input record-
ing. Our analysis shows that this is because VM-RR incurs
significant overhead when handling RDTSC instructions, as



0.0
0.25

0.5
0.75

Th
ro

ug
hp

ut
(1

0e
6 

op
s/

s)

0.0
15.0
30.0
45.0

0.0
0.8
1.6
2.4

0.0
0.25

0.5
0.75

0.0
0.25

0.5
0.75

1 2 4 8 16 32
Num. of Cores (==N)

N random reader

0
15
30
45

Sl
ow

do
wn

(ti
m

es
)

1.09 1.26 1.37 1.78 1.90 2.29
1.15 3.14 5.25 8.97 27.69 33.11

1 2 4 8 16 32
Num. of Cores (==N)
N sequential reader

0
400
800

1200
1.34 1.67 2.03 2.79 4.11 6.90
1.27 4.93 11.76 29.94 97.07759.08

1 2 4 8 16 32
Num. of Cores (==N)

N random reader
 + 1 writer

0
25
50
75 1.10 1.01 1.06 1.52 3.19 6.91

1.08 2.95 5.88 12.29 24.92 53.66

1 2 4 8 16 32
Num. of Cores (==N)

N random reader
 + 1 scanner

0
15
30
45 1.12 1.07 1.38 1.80 1.90 2.25

1.11 2.71 5.08 9.49 28.11 34.70

1 2 4 8 16 32
Num. of Cores (==N)

N Random seeker

0
25
50
75

1.08 1.18 1.35 2.03 2.42 2.77
1.12 2.92 5.58 10.24 29.70 48.16

Native KRR VM-RR

Figure 3: RocksDB benchmark throughput. Slowdown is the ratio between the native and recording throughput.

each instance necessitates a costly VM exit. The performance
impact becomes substantial with higher instruction frequen-
cies. For example, the random reader and random seeker
benchmarks incur over 18k and 14k RDTSC instructions per
second, respectively, while other benchmarks incur less than
7k. On 2-core VMs, KRR incurs a slowdown ranging from
1.01× to 1.67×, and on 4-core VMs, the slowdown ranges
from 1.06× to 2.03×. These slowdowns are markedly lower
than those observed with VM-RR, which range from 2.71×
to 4.93× on 2 cores and 5.08× to 11.76× on 4 cores. Due
to this moderate overhead, KRR enables most workloads to
achieve increased throughput as the number of cores increases
from 1 to 4. However, beyond 8 cores, RocksDB’s throughput,
under KRR, begins to decline. Our investigation reveals that
the increasing lock contention on large VMs is the primary
performance bottleneck.
Latency. The latency measurements mirror the throughput
patterns described above. From 2-core to 8-core VMs, the
operation latency under VM-RR, is slower than the native by
2.73×∼ 29.99×, while for KRR, the latency is only increased
by 1.01×∼ 2.80×.

5.1.2 Kernel Compilation

We next evaluate KRR and VM-RR using a code compilation
workload on VMs with 1, 2, 4, 8, 16, and 32 vCPU cores
and 8GB of memory. Within the VM, we compile the Linux
kernel 6.5.1 using the command make -j $(#cores + 1).
The number of worker threads is set to one more than the
number of cores to better saturate the CPU [42, 60].

Figure 4 presents the compilation time with and without
recording and the slowdown caused by KRR and VM-RR. On
a single-core VM, both KRR and VM-RR introduce moderate
slowdowns of 1.15× and 1.11×, respectively. The slightly
higher slowdown observed with KRR is because KRR needs
to additionally record guest user-space inputs to the kernel,
whereas VM-RR records only hardware inputs. However, the
scaling behaviors of KRR and VM-RR diverge significantly
when recording multi-core VMs, where concurrency-induced
non-determinism must be recorded. With KRR, kernel compi-
lation scales effectively up to 8 cores, resulting in only 22%

0

20

40

60

Ti
m

e
(m

in
ut

es
) Native

KRR
VM-RR

1 2 4 8 16 32
Num. of Cores

0
20
40
60

Sl
ow

do
wn

(ti
m

es
) 1.15 1.22 1.26 1.56 3.56 8.68

1.11 3.26 6.27 11.47 20.62 37.20

Figure 4: Linux Kernel build time. Slowdown is the ratio
between the recorded build time and the native build time.

and 56% slower than the native on 2-core and 8-core VMs.
In contrast, with VM-RR, kernel compilation does not scale
with more CPU cores. The performance under VM-RR is
226% and 1047% slower than the native on 2-core and 8-
core VMs. Similar to the RocksDB workload, kernel compila-
tion, under VM-RR, performs worse on multi-core VMs than
on single-core VMs. This finding aligns with prior work on
whole-machine RR [42, 60], which reported that kernel build
performance on 2-core VMs is slower than on single-core
VMs.

For VMs with 16 and 32 cores, KRR’s kernel build no
longer benefits from more CPU resources. The performance
downgrade, similar to the results observed with RocksDB,
stems from the increased lock contention between vCPUs as
the VM size grows.

5.2 Recording Kernel-bypassing Workloads

The difference in recording boundaries allows KRR to achieve
significantly lower overhead when recording kernel-bypass
workloads. The following section quantifies the recording ef-
ficiency of KRR on three modern kernel-bypass applications:
RocksDB (§5.2.1), Redis (§5.2.2), and Nginx (§5.2.3).



5.2.1 RocksDB with SPDK

We run RocksDB with SPDK to directly access the disk from
the user-space. In this experiment, we run several single-
threaded RocksDB workloads in a 2-core VM with 8GB of
memory and an emulated NVMe device. Following the SPDK
best practices [27], we pin the RocksDB worker thread to one
vCPU core and the SPDK polling thread to another, which
continuously monitors the NVMe device state and handles
I/O requests from the worker. The NVMe device is emulated
on a standard SATA disk with our modified QEMU (§4) that
implements NVMe data recording, which is necessary for
VM-RR and KRR—under the non-kernel-bypass mode—but
is not supported by existing NVMe devices.

Throughput. Figure 5 compares the throughput of different
RocksDB workloads with and without SPDK. The results
show that several workloads benefit from bypassing the ker-
nel for I/O handling. For instance, in the 1 sequential writer
workload, RocksDB-SPDK achieves 3.27× higher through-
put compared to RocksDB without SPDK. However, when
VM-RR is used for recording, RocksDB-SPDK experiences
significant performance degradation. Specifically, the through-
put decreases by 29.37× in the 1 random appender work-
load and 64.51× in 1 sequential deletion. These slowdowns
are substantially greater than those observed with standard
RocksDB using kernel I/O, which exhibits slowdowns rang-
ing from 1.67× to 2.30×. The severe performance degra-
dation results from the whole-system serialization approach
in whole-machine RR: when VM-RR blocks the CPU core
running the SPDK polling thread but allows the core running
the worker thread to execute, the worker thread stalls on pend-
ing I/O requests despite having CPU time. In contrast, the
RocksDB worker can progress normally when using kernel
I/O.

Conversely, KRR achieves reasonable recording overhead
with RocksDB-SPDK by allowing user-mode polling threads
to run alongside workers. For write workloads, KRR’s over-
head on RocksDB-SPDK is 10% ∼ 22.7% lower than on
traditional RocksDB, primarily because SPDK drastically
reduces both system calls (by 77% ∼ 94%) and userspace-to-
kernel data copies (by 94% ∼ 99%). The Sequential reader
benchmark also shows substantially lower slowdown under
SPDK, as KRR does not need to record the substantial DMA
data transfers that dominate this workload’s intensive disk I/O
operations.

Latency. When using kernel I/O, KRR consistently outper-
forms VM-RR with a much lower impact on operation latency.
KRR’s slowdown is within 1.14×∼ 1.54× across all work-
loads, while VM-RR’s slowdown is between 1.67×∼ 2.33×
For RocksDB with SPDK, VM-RR slows down its latency by
29.36×∼ 64.51× compared to native execution. In contrast,
KRR marginally affects the latency of RocksDB-SPDK, with
slowdowns ranging from 1.17× to 1.27×.

5.2.2 Redis with DPDK

Next, we evaluate KRR on Redis with kernel-bypass. The
evaluation utilizes two inter-connected c6420 machines on
CloudLab: one for hosting the Redis server inside the VM,
and another for running the Redis benchmark [24]. The VM is
configured with 4 vCPU cores, 8GB memory, and has direct
access (i.e., passthrough) to the dual-port Intel X710 10GbE
NIC. Within the VM, we deploy the Redis implementation
from the f-stack kernel-bypass framework [10], which lever-
ages DPDK [9] for direct network card access. The client
machine runs the Redis GET and SET benchmarks separately
with 5 million requests and different numbers of concurrent
client threads ∈ {1,2,4,8,16,32,64}. Due to the lack of data
recording support in the physical NIC under this setup, VM-
RR is unable to accurately record all hardware inputs to the
VM. Thus, it is excluded from this evaluation.

Figure 6 shows that KRR can efficiently and scalably record
the guest kernel under the Redis-DPDK workload, Across all
numbers of concurrent clients, KRR only reduces the GET
throughput by 0.26% and the SET throughput by 1.14% on
average. Additionally, the P99 latency measurement exhibits
slowdowns ranging from -5.19% to 11.27%. The minimal
recording overhead is because the guest kernel receives sig-
nificantly fewer inputs under Redis-DPDK. By delegating the
heavyweight data path to the user-space, the guest kernel is pri-
marily responsible for handling the I/O control path, thereby
reducing the number of events that need to be recorded.

5.2.3 Nginx with DPDK

Using a similar setup to the Redis-DPDK experiment, we
evaluate KRR’s recording performance on Nginx with DPDK
kernel-bypass (version 1.25.2, implemented in f-stack). On
the server side, we use VMs with different numbers of vCPUs
∈ 1,2,4,8,16,32 and run Nginx with the matching number of
worker processes. On the client side, we run the benchmark
tool wrk [31] to request files of size ∈ 1KB,4KB,16KB,64KB
over 1024 connections (32 connections per client thread) for
a duration of 10 seconds.

Figure 7 shows that the recording overhead of KRR varies
significantly with the requested file size. For small files (1KB
and 4KB), KRR incurs a relatively high slowdown exceeding
46%, and this overhead becomes increasingly severe as the
number of cores increases. However, for larger files (16KB
and 64KB), the overhead of KRR becomes almost negligi-
ble, reducing to merely 2% for 16KB files and 5% for 64KB
files across all VM sizes. Our analysis reveals that this dis-
crepancy is due to the unique performance bottlenecks in
serving files of different sizes. For small files, the bulk of the
request processing time is spent in the kernel reading the file.
Since KRR instruments these kernel operations, the recording
overhead causes a significant slowdown in the end-to-end
throughput. In contrast, when serving larger files, the primary
performance bottleneck shifts to the network transfer. Under



0.0
0.8
1.6
2.4

Th
ro

ug
hp

ut
(1

0e
6 

op
s/

s)

0.0
0.06
0.12
0.18

0.0
0.08
0.16
0.24

0.0
0.3
0.6
0.9

0.0

0.15

0.3

0.45

0.0
0.4
0.8
1.2

0.0
0.025
0.05

0.075

kernel-IO SPDK
1 sequential

 reader

0
25
50
75

Sl
ow

do
wn

(ti
m

es
)

1.41 1.18
1.83 50.64

kernel-IO SPDK
1 random
 seeker

0
20
40
60 1.19 1.18

1.74 42.63

kernel-IO SPDK
1 random
 reader

0
20
40
60

1.14 1.17
1.67 35.43

kernel-IO SPDK
1 sequential

 writer

0
30
60
90 1.53 1.24

2.30 61.31

kernel-IO SPDK
1 random

 writer

0
20
40
60 1.54 1.19

1.95 44.09

kernel-IO SPDK
1 sequential

 deletion

0
30
60
90 1.47 1.18

1.88 64.51

kernel-IO SPDK
1 random
 appender

0
15
30
45

1.40 1.26
1.98 29.37

Native KRR VM-RR

Figure 5: Throughput of RocksDB w/ and w/o SPDK on single-threaded workloads. Slowdown is the ratio between the native
and recording throughput.

1 2 4 8 16 32 64
Client Threads

0

200

400

600

RP
S

(1
0e

3 
re

q/
se

c)

82
.2
1

15
8.
70

25
2.
15

27
3.
94 32

8.
66

51
4.
86

51
2.
10

81
.6
2

15
8.
19

25
2.
58

27
2.
44 32

8.
80

51
2.
61

51
2.
11

GET

1 2 4 8 16 32 64
Client Threads

0

200

400

600

81
.6
4

15
7.
07

25
1.
62

27
2.
06 31
0.
73

49
1.
69

48
9.
17

81
.4
7

15
7.
19

25
0.
61

27
0.
22

29
6.
72

48
7.
61

48
7.
15

SET
Native KRR

Figure 6: Redis Kernel-bypass Throughput

the kernel-bypass setup, KRR does not need to record these
transfer operations, resulting in minimal performance impact.

5.3 Reproduce kernel bugs using KRR
This section evaluates the effectiveness of KRR in recording
and replaying Linux kernel bugs. To construct a representa-
tive evaluation dataset, we systematically collect bugs from
two well-established bug-reporting sources. First, we gather
bugs found by Syzbot [28], a Linux kernel continuous testing
project that publicly reports kernel bugs along with reproduc-
ers (if any). Specifically, we identify 92 bugs that are found by
Syzbot in Linux kernel 6.1.X and have associated reproducer
programs. Next, we collect 81 bugs whose titles contain any
of the keywords: WARNING, BUG, deadlock, and KASAN
to focus on severe kernel errors. From these bugs, we ran-
domly select 12 bugs. Next, to evaluate KRR on high-impact
kernel vulnerabilities, we additionally collect 5 recent Linux
kernel CVEs [4–8] that have high severity scores and were
evaluated by prior research work [75] and rated at least as
"Important Impact" by Red Hat Product Security [23]. The
resulting dataset consists of 17 Linux kernel bugs.

Table 1 presents the bug reproduction results for 12 bugs
found by Syzbot, along with the average iteration required
to execute the reproducer before triggering the bug. First, 6
bugs (50%) are considered deterministic bugs because they
can be reproduced consistently within the first iteration of the
reproducer under native execution. KRR successfully repro-
duces all 6 deterministic bugs within a single iteration as well.

0

250

500

750

RP
S

(1
0e

3 
re

q/
se

c) Native
KRR

1 2 4 8 16 32
Num. of Cores

0

2

4

6

8

Sl
ow

do
wn

(ti
m

es
)

1.46 1.55 1.61
2.20

3.73

7.16

(a) File Size == 1KB

0

80

160

240

RP
S

(1
0e

3 
re

q/
se

c)

Native
KRR

1 2 4 8 16 32
Num. of Cores

0.0

0.5

1.0

1.5

2.0

Sl
ow

do
wn

(ti
m

es
) 1.38 1.25

1.01 1.01 1.12

2.04

(b) File Size == 4KB

0

20

40

60

RP
S

(1
0e

3 
re

q/
se

c)

Native
KRR

1 2 4 8 16 32
Num. of Cores

0.0

1.5

3.0

4.5

Sl
ow

do
wn

(ti
m

es
)

1.01 1.01 1.01 1.01 1.01 1.02

(c) File Size == 16KB

0

5

10

15

RP
S

(1
0e

3 
re

q/
se

c)

Native
KRR

1 2 4 8 16 32
Num. of Cores

0.0

1.5

3.0

4.5

Sl
ow

do
wn

(ti
m

es
)

1.01 1.01 1.01 1.02 1.03 1.05

(d) File Size == 64KB

Figure 7: Throughput of Nginx kernel-bypass benchmarks
with different file sizes.

Second, the remaining 6 bugs are non-deterministic, requiring
varying numbers of iterations to reproduce in native execu-
tion. Among these bugs, KRR is able to reproduce 5 of 6.
Furthermore, our analysis of the median number of iterations
required to first trigger the bug does not show a significant
difference between the two approaches. In fact, in 3 out of
the 6 non-deterministic cases, KRR reproduced the bugs with
fewer iterations than the native execution.

For example, KRR performs better than native on bug #5.
This bug is caused by a race condition, in which two threads



concurrently execute the function gsm_cleanup_mux, and ac-
cesses to the shared variable dlci need to occur in a specific
order to trigger the use-after-free. KRR can reproduce this
bug because the function acquires a mutex using mutex_lock

halfway through its execution, giving a chance for other tasks
to be scheduled even in a serialized execution given our algo-
rithm (§3.3).

Bug #8, a potential deadlock in rcu_report_exp_cpu_

mult(), can only be reproduced in a multi-core VM with
native execution. This bug involves a lock ordering viola-
tion: when multiple cores contend for the same spinlock,
one core acquires it with interrupts disabled (making it
hardirq-safe). During this execution, the system triggers
a BPF trace that attempts to acquire a hardirq-unsafe lock.
This sequence—acquiring a hardirq-safe lock followed by
a hardirq-unsafe lock—violates lockdep’s locking rules and
can lead to deadlock. The bug requires parallel execution:
multiple cores must concurrently attempt to acquire the same
lock with the interrupt disabled. This scenario cannot occur
on single-core systems, where only one execution context can
run at a time. Thus, KRR cannot reproduce this bug because
its serialization approach prevents concurrent lock contention
between cores.

Security-sensitive bugs. Table 2 shows the bug reproduction
results for 5 Linux kernel CVEs. These vulnerabilities encom-
pass a diverse range of bug types, including three privilege
escalation vulnerabilities, a heap overflow vulnerability, and
a control flow hijacking vulnerability. KRR can successfully
record and replay all 5 CVEs, demonstrating its effectiveness
in reproducing complex kernel exploitations.

ID Description Kernel Det. Repro.
Iterations
Median

Native KRR

#1 Paging error in vsyscall 6.1.77 N Y 39.0 52.5
#2 null-ptr-deref in hugetlb 6.1.61 N Y 22.0 21.0
#3 use-after-free in af_unix 6.1.62 N Y 45.5 52.0
#4 null-ptr-deref in fs/sysv 6.1.34 Y Y 1.0 1.0
#5 use-after-free in tty 6.1.35 N Y 28.0 1.5
#6 Deadlock in ext3 6.1.31 Y Y 1.0 1.0
#7 Deadlock in vfs_write 6.1.34 Y Y 1.0 1.0
#8 Deadlock in bpf 6.1.84 N N 115.0 N/A
#9 Deadlock in vhci 6.1.66 Y Y 1.0 1.0
#10 Deadlock in af_unix 6.1.84 N Y 209.0 187.0
#11 Warning in BPF 6.1.18 Y Y 1.0 1.0
#12 Warning in BPF 6.1.86 Y Y 1.0 1.0

Table 1: Reproduction results of bugs found by Syzbot. Some
bugs are deterministic ("Det.") and all bugs except for one
are reproducible by KRR ("Repro."). The table shows the
median number of test iterations required to hit the bug across
10 runs.

CVE Type Kernel Repro.

CVE-2024-1086 Privilege Escalation 6.1.0 Y
CVE-2022-0847 Privilege Escalation 5.10.222 Y
CVE-2022-0185 Heap Overflow 5.10.222 Y
CVE-2021-4154 Control Flow Hijacking 5.10.222 Y
CVE-2022-2639 Privilege Escalation 5.17.4 Y

Table 2: Summary of evaluated CVEs.

5.4 Storage Cost

KRR’s storage cost is lower than VM-RR when recording
kernel-bypass workloads because KRR does not need to
record the data between the guest user-space and the hard-
ware while VM-RR does. Across all evaluated workloads
(§5.2.1), VM-RR on average records at a rate of 9.4 MB of
data per second while KRR records 4.8 MB per second—the
storage cost of KRR is 48.9% lower. The storage cost deduc-
tion also aligns with the low recording overhead of KRR on
kernel-bypass workloads (§5.2).

When recording workloads that do not use kernel-bypass
techniques, KRR imposes higher storage cost compared to
VM-RR because it records additionally the software inputs.
Specifically, for the RocksDB workloads (§5.1.1), VM-RR
records an average of 8.26 MB of data per second, whereas
KRR records 53.39 MB per second (546.57% more). In total,
KRR and VM-RR on average record 999.22 MB and 464.48
MB of data, respectively. However, the recording data of KRR
is highly compressible. After applying gzip compression, the
recorded data of KRR is reduced to 144.52 MB (a 6.91x reduc-
tion), suggesting the potential for using hardware compression
features [14] to compress the data in real-time—an optimiza-
tion we leave for future work. These numbers are well within
the bandwidth of data center storage, which reaches a few
GB/s, so it can be easily sustained. Furthermore, the length
of the trace can be reduced by taking frequent snapshots even
on very long-running workloads.

5.5 Replay Performance

While KRR skips the userspace execution during the re-
play, which contributes significantly to reducing replay over-
head, its replay execution is still generally slower than na-
tive execution by 20×∼ 150×. This slowdown is expected
given that our prototype’s replayer uses the QEMU emu-
lator (§3.5) in the single-step mode (one instruction per
translation block). Based on our tests on the benchmarks
in §5.1.1, with whole system execution, full emulation (TCG)
alone introduces a 7.5×∼ 20.6× slowdown compared to na-
tive KVM. With single-step enabled, the slowdown reaches
120×∼ 400×. KRR also disables QEMU TCG’s optimiza-
tion of lazy EFLAGS evaluation to simplify the logic that
ensures consistency between the record and replay runs. To-
gether, these factors contribute to the bulk of the replay over-

https://syzkaller.appspot.com/bug?extid=a6a617741b9816d3f7c2
https://syzkaller.appspot.com/bug?extid=b2c92cdf120616d1f63b
https://syzkaller.appspot.com/bug?extid=a4f9427caf72d1b98445
https://syzkaller.appspot.com/bug?extid=4f729e4709113b5494ac
https://syzkaller.appspot.com/bug?extid=947ecd0ac8b5b531dcc9
https://syzkaller.appspot.com/bug?extid=dafdb578b33989ec0674
https://syzkaller.appspot.com/bug?extid=9be0d52892bc93e4de1d
https://syzkaller.appspot.com/bug?extid=3b001e9ea0e979613227
https://syzkaller.appspot.com/bug?extid=1cd9f78203c5a5d74187
https://syzkaller.appspot.com/bug?extid=639d2cc188ba16f9f7f2
https://syzkaller.appspot.com/bug?extid=af559a703a8da2d14308
https://syzkaller.appspot.com/bug?extid=6a277a9044a785b43d58
https://access.redhat.com/security/cve/cve-2024-1086
https://access.redhat.com/security/cve/cve-2022-0847
https://access.redhat.com/security/cve/cve-2022-0185
https://access.redhat.com/security/cve/cve-2021-4154
https://access.redhat.com/security/cve/cve-2022-2639


head in our prototype, but are not fundamental to the KRR’s
sliced record replay approach (§2).

Despite this performance trade-off, emulation-based replay
is commonly used in existing record-replay systems [21, 40]
for its rich debugging capabilities and portability. The periodic
snapshots taken during recording also mitigate performance
concerns by allowing replay to start from intermediate points
rather than always replaying from the beginning. Future work
could explore optimizations like enabling batch translation
blocks [22] while maintaining replay accuracy to improve
performance further under full emulation.

6 Discussion

Scalability. While the evaluation (§5.1.2, §5.1.1) shows that
the scalability of KRR decreases with higher numbers of
vCPU cores (e.g., beyond 8 cores), it demonstrates that KRR
enables modern workloads to scale effectively on VMs with 1-
8 vCPU cores—a sweet spot for most real-world deployments.
This range aligns with industry standards, as exemplified by
Azure’s session host sizing guidelines, which designate 8
vCPUs as sufficient for heavy workloads [25].

Nevertheless, future work could enhance parallelism in
KRR, moving beyond the current serialization of kernel exe-
cution. A promising direction is to integrate techniques from
chunk-based serialization algorithms, such as Samsara’s al-
gorithm [54, 60]. Adopting such an approach in KRR could
enable true parallel kernel execution and potentially broaden
the class of bugs that KRR can reproduce.

Pass-through Device. KRR currently does not support pass-
through devices or SR-IOV [26] that operate outside of kernel-
bypass mode. This limitation is because KRR relies on hy-
pervisor emulation to record device DMA buffers and tim-
ing. A potential solution involves leveraging KRR’s in-guest
recorder component. Since this recorder already operates
within the guest kernel with privileged access to kernel data
structures, it could be extended to intercept and log interac-
tions with these pass-through devices. Following an approach
similar to prior work [70], the in-guest recorder could monitor
device driver operations, capturing DMA buffer contents and
I/O timing information directly at the driver interface level
rather than requiring hypervisor intervention.

Recording Scope. Without specialized hardware, no tech-
nique can record all non-deterministic failures – subtle timing
changes can make such failures more likely or less likely to
occur. KRR employs serialization to ensure deterministic exe-
cution of the kernel, which is crucial for accurate replay but
can potentially mask certain concurrency bugs that depend
on parallel thread interactions. Despite serializing the kernel
execution, KRR’s mechanism effectively models a single-
core system where concurrency still occurs through context
switching and interrupts. This is because KRR’s serialization
mechanisms allow for a change in which threads can grab

the RC spinlock and run during preemption or interrupts, mir-
roring how the kernel’s built-in schedule would change the
running thread in response to such events. Consequently, KRR
is still effective at reproducing a broad class of concurrency
bugs that only manifest under specific thread interleavings.
In essence, if a concurrency bug can be triggered on a single-
core system through context switching, KRR can record and
replay it.

On the other hand, by design and like other RR systems,
KRR cannot reproduce concurrency bugs that strictly require
true parallelism—i.e., the simultaneous execution of kernel
code on multiple physical cores. This category includes bugs
related to weak memory models or specific scenarios involv-
ing the parallel execution of uninterruptible kernel code on
one core and normal kernel code on another. Furthermore,
serialization may also make bugs that surface only within
extremely narrow race windows, highly sensitive to precise
parallel timing, more challenging to capture [50]. Despite the
limitations in reproducing certain concurrency bugs, alterna-
tive approaches can be used to detect them. For instance, some
concurrency bug detection techniques [52], such as the lockset
data race detector [62], have a high degree of schedule inde-
pendence, enabling the detection of bugs even in executions
that do not manifest failures.

Privacy. Since KRR records user-space data to ensure correct
kernel replay, this could raise potential privacy concerns. Like
traditional settings, which assume hypervisors and kernels
are trusted, we assume that KRR is trusted and privacy is
not a design concern. This approach aligns with traditional
VM RR approaches [60, 64], which also collect all VM data.
However, our design has the advantage that it limits exposure
by only recording data that directly interacts with the kernel
(through system calls and memory accesses). Future work
could explore selective data filtering [34] or trace encryption
for use cases where privacy guarantees are important.

7 Related Work

Reproducing the execution in which a failure occurs is es-
sential for developers to diagnose bugs in system software.
Two main approaches have emerged to address this challenge:
record and replay techniques that capture and reproduce the
exact execution, and partial reconstruction methods that recre-
ate critical aspects of the execution without full recording.

Application RR. Application record-replay techniques record
non-deterministic inputs to the application and its internal non-
determinism such as concurrency. Among them, Mozilla RR
[56] provides deterministic record-replay for multi-threaded
applications. Similar to KRR, RR records the concurrency
non-determinism by serializing concurrent threads and record-
ing the schedule. Castor [53] focuses on improving the record-
ing performance on multi-threaded but data-race-free appli-
cations. Specifically, Castor allows user-space threads to run



in parallel but records the ordering of the thread synchro-
nizations. During the replay, Castor reproduces the execution
by replicating the synchronization ordering. However, this
approach is impractical for recording the kernel due to the
prevalence of data races in operating systems [67].

Whole-machine RR. Whole-machine record-replay tech-
niques record and replay the entire VM execution by cap-
turing all non-deterministic events across the VM bound-
ary. Retrace [64] introduces the first whole-machine RR tool
based on the hypervisor, which is adopted later by VMWare
in its first Fault Tolerance implementation [63]. More recently,
PANDA [40] develops a whole-machine RR platform with
powerful extensions for binary analysis. However, they all
focus on single-core systems. Multi-core record and replay
has evolved through several key systems. SMP-Revirt [42] in-
troduced CREW (concurrent-read, exclusive-write) protocols
for recording memory access ordering. ReEmu [35] enhanced
CREW’s scalability based on full system emulation. Sam-
sara [60] improved efficiency by leveraging hardware assis-
tance and employing chunk-based memory access recording.

Failure Reconstruction. Prior work [36,38,39,57,66,71,76]
explores failure diagnosis without record-replay. REPT [38]
leverages Intel PT [12] to record both program control flow
and timing information, along with the final memory dump. It
then tries to reconstruct the execution history through binary
analysis of these recorded traces. However, it faces two impor-
tant limitations: it is not fully accurate and cannot reconstruct
all data values that are necessary for debugging, struggling, in
particular, to reconstruct long executions. Kernel REPT [45]
extends this to kernel failures with more extensive analysis
functionality. In contrast, KRR provides a more efficient and
scalable solution for kernel-level record-replay, enabling reli-
able reproduction of failures.

8 Conclusion

This paper presents KRR, an efficient and scalable kernel
record-replay system. Unlike the traditional whole-VM RR
approach, KRR incurs low overhead on the VM performance
because it reduces the RR boundary from the entire VM to
the guest kernel only, completely avoiding the expensive yet
unnecessary cost that whole-VM RR has to pay for recording
the guest user space. The evaluation shows that KRR achieves
high recording performance on several real-world workloads,
and scales well to multi-core VMs. On modern workloads
that exploit kernel-bypass, KRR even shows close-to-native
recording performance. We believe KRR fills the gap between
application RR and whole-VM RR, and we hope KRR can
help developers efficiently and effectively diagnose failures
in the kernel.

Acknowledgments

We would like to thank the anonymous reviewers and our
shepherd for their feedback, which greatly improved the pa-
per. We also thank the Purdue Reliable and Secure System
Lab members for their helpful comments on this work and
earlier drafts. We are also grateful to Cloudlab for providing
experimental machines. This work was funded in part by Na-
tional Science Foundation (NSF) under grants CNS-2140305
and CNS-2145888 and gifts from Google and Intel.

References

[1] Background Snapshot. https://kvm-forum.qemu.or
g/2021/kvm2021-background-snapshot.pdf. Last
accessed: April, 2025.

[2] Benchmarking tools. https://github.com/faceb
ook/rocksdb/wiki/Benchmarking-tools. Last
accessed: April, 2024.

[3] CloudLab. https://www.cloudlab.us/. Last ac-
cessed: April, 2025.

[4] CVE-2021-4154. https://access.redhat.com/se
curity/cve/cve-2021-4154. Last accessed: Novem-
ber, 2024.

[5] CVE-2022-0185. https://access.redhat.com/se
curity/cve/cve-2022-0185. Last accessed: Novem-
ber, 2024.

[6] CVE-2022-0847. https://access.redhat.com/se
curity/cve/cve-2022-0847. Last accessed: Novem-
ber, 2024.

[7] CVE-2022-2639. https://access.redhat.com/se
curity/cve/cve-2022-2639. Last accessed: Novem-
ber, 2024.

[8] CVE-2024-1086. https://access.redhat.com/se
curity/cve/cve-2024-1086. Last accessed: Novem-
ber, 2024.

[9] DPDK. https://www.dpdk.org/. Last accessed:
April, 2024.

[10] f-stack. https://github.com/F-Stack/f-stack.
Last accessed: November, 2024.

[11] GDB Reverse Debugging. https://sourceware.o
rg/gdb/wiki/ReverseDebug. Last accessed: April,
2025.

[12] Intel PT. https://edc.intel.com/content/in
tel-processor-trace/. Last accessed: November,
2024.

https://kvm-forum.qemu.org/2021/kvm2021-background-snapshot.pdf
https://kvm-forum.qemu.org/2021/kvm2021-background-snapshot.pdf
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://github.com/facebook/rocksdb/wiki/Benchmarking-tools
https://www.cloudlab.us/
https://access.redhat.com/security/cve/cve-2021-4154
https://access.redhat.com/security/cve/cve-2021-4154
https://access.redhat.com/security/cve/cve-2022-0185
https://access.redhat.com/security/cve/cve-2022-0185
https://access.redhat.com/security/cve/cve-2022-0847
https://access.redhat.com/security/cve/cve-2022-0847
https://access.redhat.com/security/cve/cve-2022-2639
https://access.redhat.com/security/cve/cve-2022-2639
https://access.redhat.com/security/cve/cve-2024-1086
https://access.redhat.com/security/cve/cve-2024-1086
https://www.dpdk.org/
https://github.com/F-Stack/f-stack
https://sourceware.org/gdb/wiki/ReverseDebug
https://sourceware.org/gdb/wiki/ReverseDebug
https://edc.intel.com/content/intel-processor-trace/
https://edc.intel.com/content/intel-processor-trace/


[13] Intel® 64 and IA-32 Architectures Software Developer
Manuals. https://www.intel.com/content/www/
us/en/developer/articles/technical/intel-s
dm.html. Last accessed: April, 2025.

[14] Intel® QuickAssist Technology (QAT) QATzip Library.
https://intel.github.io/quickassist/qatlib
/qatzip.html. Last accessed: November, 2024.

[15] io_uring. https://man7.org/linux/man-pages/m
an7/io_uring.7.html. Last accessed: November,
2024.

[16] Kernel GDB Debugging. https://www.kernel.org
/doc/html/v4.16/dev-tools/gdb-kernel-debug
ging.html. Last accessed: November, 2024.

[17] Kernel Parameters. https://docs.kernel.org/admi
n-guide/kernel-parameters.html. Last accessed:
April, 2024.

[18] Kernel rseq. https://github.com/torvalds/li
nux/blob/master/kernel/rseq.c. Last accessed:
November, 2024.

[19] NAPI. https://docs.kernel.org/networking/n
api.html. Last accessed: November, 2024.

[20] QEMU. https://www.qemu.org/. Last accessed:
April, 2024.

[21] QEMU Record Replay. https://www.qemu.org/d
ocs/master/system/replay.html. Last accessed:
April, 2024.

[22] QEMU Translation. https://www.qemu.org/docs/
master/devel/tcg-ops.html. Last accessed: April,
2025.

[23] Red Hat Security Ratings. https://access.redha
t.com/security/updates/classification/. Last
accessed: November, 2024.

[24] Redis Benchmark. https://redis.io/docs/latest
/operate/oss_and_stack/management/optimiza
tion/benchmarks/. Last accessed: November, 2024.

[25] Session host virtual machine sizing guidelines. https:
//learn.microsoft.com/en-us/windows-server/
remote/remote-desktop-services/virtual-mac
hine-recs. Last accessed: November, 2024.

[26] SR-IOV. https://www.ibm.com/docs/en/power1
0?topic=networking-single-root-io-virtual
ization. Last accessed: April, 2025.

[27] Storage performance development kit application event
framework. https://www.intel.com/content/ww
w/us/en/developer/articles/technical/stora

ge-performance-development-kit-application
-event-framework.html. Last accessed: December,
2024.

[28] Syzbot. https://syzkaller.appspot.com/. Last
accessed: November, 2024.

[29] Time-of-check to time-of-use. https://en.wikiped
ia.org/wiki/Time-of-check_to_time-of-use.
Last accessed: November, 2024.

[30] Unreliable guide to hacking the linux kernel. https:
//www.kernel.org/doc/html/v4.13/kernel-hac
king/hacking.html. Last accessed: April, 2025.

[31] wrk. https://github.com/wg/wrk. Last accessed:
April, 2024.

[32] Adil Ahmad, Botong Ou, Congyu Liu, Xiaokuan Zhang,
and Pedro Fonseca. Veil: A protected services frame-
work for confidential virtual machines. In Proceedings
of the 28th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS’23), pages 378–393, Vancouver,
Canada, March 2023.

[33] Adam Belay, George Prekas, Ana Klimovic, Samuel
Grossman, Christos Kozyrakis, and Edouard Bugnion.
Ix: A protected dataplane operating system for high
throughput and low latency. In USENIX Symposium on
Operating Systems Design and Implementation, 2014.

[34] Miguel Castro, Manuel Costa, and Jean-Philippe Martin.
Better bug reporting with better privacy. In Proceedings
of the 13th international conference on Architectural
support for programming languages and operating sys-
tems, ASPLOS08, page 319–328. ACM, March 2008.

[35] Yufei Chen and Haibo Chen. Scalable deterministic
replay in a parallel full-system emulator. In Proceedings
of the 18th ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP ’13, page
207–218. ACM, February 2013.

[36] Trishul M Chilimbi, Ben Liblit, Krishna Mehra,
Aditya V Nori, and Kapil Vaswani. HOLMES: Effec-
tive statistical debugging via efficient path profiling. In
2009 IEEE 31st International Conference on Software
Engineering. IEEE, 2009.

[37] Vitaly Chipounov, Volodymyr Kuznetsov, and George
Candea. S2e: a platform for in-vivo multi-path anal-
ysis of software systems. ACM SIGPLAN Notices,
46(3):265–278, March 2011.

[38] Weidong Cui, Xinyang Ge, Baris Kasikci, Ben Niu, Upa-
manyu Sharma, Ruoyu Wang, and Insu Yun. REPT:
Reverse debugging of failures in deployed software. In

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://intel.github.io/quickassist/qatlib/qatzip.html
https://intel.github.io/quickassist/qatlib/qatzip.html
https://man7.org/linux/man-pages/man7/io_uring.7.html
https://man7.org/linux/man-pages/man7/io_uring.7.html
https://www.kernel.org/doc/html/v4.16/dev-tools/gdb-kernel-debugging.html
https://www.kernel.org/doc/html/v4.16/dev-tools/gdb-kernel-debugging.html
https://www.kernel.org/doc/html/v4.16/dev-tools/gdb-kernel-debugging.html
https://docs.kernel.org/admin-guide/kernel-parameters.html
https://docs.kernel.org/admin-guide/kernel-parameters.html
https://github.com/torvalds/linux/blob/master/kernel/rseq.c
https://github.com/torvalds/linux/blob/master/kernel/rseq.c
https://docs.kernel.org/networking/napi.html
https://docs.kernel.org/networking/napi.html
https://www.qemu.org/
https://www.qemu.org/docs/master/system/replay.html
https://www.qemu.org/docs/master/system/replay.html
https://www.qemu.org/docs/master/devel/tcg-ops.html
https://www.qemu.org/docs/master/devel/tcg-ops.html
https://access.redhat.com/security/updates/classification/
https://access.redhat.com/security/updates/classification/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://redis.io/docs/latest/operate/oss_and_stack/management/optimization/benchmarks/
https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/virtual-machine-recs
https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/virtual-machine-recs
https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/virtual-machine-recs
https://learn.microsoft.com/en-us/windows-server/remote/remote-desktop-services/virtual-machine-recs
https://www.ibm.com/docs/en/power10?topic=networking-single-root-io-virtualization
https://www.ibm.com/docs/en/power10?topic=networking-single-root-io-virtualization
https://www.ibm.com/docs/en/power10?topic=networking-single-root-io-virtualization
https://www.intel.com/content/www/us/en/developer/articles/technical/storage-performance-development-kit-application-event-framework.html
https://www.intel.com/content/www/us/en/developer/articles/technical/storage-performance-development-kit-application-event-framework.html
https://www.intel.com/content/www/us/en/developer/articles/technical/storage-performance-development-kit-application-event-framework.html
https://www.intel.com/content/www/us/en/developer/articles/technical/storage-performance-development-kit-application-event-framework.html
https://syzkaller.appspot.com/
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use
https://www.kernel.org/doc/html/v4.13/kernel-hacking/hacking.html
https://www.kernel.org/doc/html/v4.13/kernel-hacking/hacking.html
https://www.kernel.org/doc/html/v4.13/kernel-hacking/hacking.html
https://github.com/wg/wrk


13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 17–32, Carlsbad,
CA, October 2018. USENIX Association.

[39] Weidong Cui, Marcus Peinado, Sang Kil Cha, Yanick
Fratantonio, and Vasileios P Kemerlis. RETracer. In
Proceedings of the 38th International Conference on
Software Engineering, New York, NY, USA, May 2016.
ACM.

[40] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim
Leek, and Ryan Whelan. Repeatable reverse engineer-
ing with panda. In Proceedings of the 5th Program Pro-
tection and Reverse Engineering Workshop, PPREW-5,
New York, NY, USA, 2015. Association for Computing
Machinery.

[41] Siying Dong, Shiva Shankar P, Satadru Pan, Anand
Ananthabhotla, Dhanabal Ekambaram, Abhinav Sharma,
Shobhit Dayal, Nishant Vinaybhai Parikh, Yanqin Jin,
Albert Kim, Sushil Patil, Jay Zhuang, Sam Dunster,
Akanksha Mahajan, Anirudh Chelluri, Chaitanya Datye,
Lucas Vasconcelos Santana, Nitin Garg, and Omkar
Gawde. Disaggregating rocksdb: A production experi-
ence. Proceedings of the ACM on Management of Data,
1:1 – 24, 2023.

[42] George W. Dunlap, Dominic G. Lucchetti, Michael A.
Fetterman, and Peter M. Chen. Execution replay of
multiprocessor virtual machines. In Proceedings of the
Fourth ACM SIGPLAN/SIGOPS International Confer-
ence on Virtual Execution Environments, VEE ’08, page
121–130, New York, NY, USA, 2008. Association for
Computing Machinery.

[43] Jakob Engblom. A review of reverse debugging. In Pro-
ceedings of the 2012 System, Software, SoC and Silicon
Debug Conference, pages 1–6, 2012.

[44] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Bran-
denburg. SKI: Exposing kernel concurrency bugs
through systematic schedule exploration. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 415–431, Broomfield,
CO, October 2014. USENIX Association.

[45] Xinyang Ge, Ben Niu, and Weidong Cui. Reverse debug-
ging of kernel failures in deployed systems. In USENIX
Annual Technical Conference, 2020.

[46] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and
Petros Maniatis. Snowboard: Finding kernel concur-
rency bugs through systematic inter-thread communica-
tion analysis. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP ’21,
page 66–83, New York, NY, USA, 2021. Association
for Computing Machinery.

[47] Sishuai Gong, Dinglan Peng, Deniz Altınbüken, Pedro
Fonseca, and Petros Maniatis. Snowcat: Efficient kernel
concurrency testing using a learned coverage predictor.
In Proceedings of the 29th Symposium on Operating
Systems Principles, SOSP ’23, page 35–51, New York,
NY, USA, 2023. Association for Computing Machinery.

[48] Sishuai Gong, Wang Rui, Deniz Altinbüken, Pedro Fon-
seca, and Petros Maniatis. Snowplow: Effective ker-
nel fuzzing with a learned white-box test mutator. In
Proceedings of the 30th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS ’25, page
1124–1138, New York, NY, USA, 2025. Association for
Computing Machinery.

[49] Shreyas Kharbanda and Pedro Fonseca. Always-
on recording framework for serverless computations:
Opportunities and challenges. In Proceedings of
the 1st Workshop on SErverless Systems, Applications
and MEthodologies (SESAME’23), pages 41–49, Rome,
Italy, 2023.

[50] Yoochan Lee, Changwoo Min, and Byoungyoung Lee.
ExpRace: Exploiting kernel races through raising inter-
rupts. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2363–2380. USENIX Association,
August 2021.

[51] Zhenpeng Lin, Yueqi Chen, Yuhang Wu, Dongliang Mu,
Chensheng Yu, Xinyu Xing, and Kang Li. Grebe: Un-
veiling exploitation potential for linux kernel bugs. In
2022 IEEE Symposium on Security and Privacy (SP),
pages 2078–2095, 2022.

[52] Congyu Liu, Sishuai Gong, and Pedro Fonseca. Kit:
Testing os-level virtualization for functional interference
bugs. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
’23, page 427–441. ACM, January 2023.

[53] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David
Mazieres, and Mendel Rosenblum. Towards practical
default-on multi-core record/replay. In Proceedings of
the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’17, page 693–708, New York,
NY, USA, 2017. Association for Computing Machinery.

[54] Pablo Montesinos, Luis Ceze, and Josep Torrellas.
Delorean: Recording and deterministically replay-
ing shared-memory multiprocessor execution effi-
ciently. ACM SIGARCH Computer Architecture News,
36(3):289–300, June 2008.



[55] Dongliang Mu, Yuhang Wu, Yueqi Chen, Zhenpeng Lin,
Chensheng Yu, Xinyu Xing, and Gang Wang. An in-
depth analysis of duplicated linux kernel bug reports. In
Proceedings 2022 Network and Distributed System Se-
curity Symposium, NDSS 2022. Internet Society, 2022.

[56] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. Engineer-
ing record and replay for deployability. In Proceed-
ings of the 2017 USENIX Annual Technical Conference
(USENIX ATC 17), Santa Clara, CA, 2017.

[57] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning
Yin, Rini Kaushik, Kyu H Lee, and Shan Lu. PRES.
In Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, New York, NY, USA,
October 2009. ACM.

[58] Dinglan Peng, Congyu Liu, Tapti Palit, Anjo Vahldiek-
Oberwagner, Mona Vij, and Pedro Fonseca. Pegasus:
Transparent and unified kernel-bypass networking for
fast local and remote communication. In Proceedings of
the Twentieth European Conference on Computer Sys-
tems, EuroSys ’25, page 360–378. ACM, March 2025.

[59] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,
Doug Woos, Arvind Krishnamurthy, Thomas Anderson,
and Timothy Roscoe. Arrakis: The operating system is
the control plane. ACM Trans. Comput. Syst., 33(4), nov
2015.

[60] Shiru Ren, Le Tan, Chunqi Li, Zhen Xiao, and Weijia
Song. Samsara: efficient deterministic replay in mul-
tiprocessor environments with hardware virtualization
extensions. In Proceedings of the 2016 USENIX Confer-
ence on Usenix Annual Technical Conference, USENIX
ATC ’16, page 551–564, USA, 2016. USENIX Associa-
tion.

[61] Robin Salkeld, Wenhao Xu, Brendan Cully, Geof-
frey Lefebvre, Andrew Warfield, and Gregor Kiczales.
Retroactive aspects: programming in the past. In Pro-
ceedings of the Ninth International Workshop on Dy-
namic Analysis, ISSTA ’11, page 29–34. ACM, July
2011.

[62] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: a dynamic
data race detector for multithreaded programs. ACM
Transactions on Computer Systems, 15(4):391–411,
November 1997.

[63] Daniel J. Scales, Mike Nelson, and Ganesh Venkitacha-
lam. The design of a practical system for fault-tolerant
virtual machines. ACM SIGOPS Operating Systems
Review, 44(4):30–39, December 2010.

[64] MXVMJ Sheldon and Ganesh Venkitachalam Boris
Weissman. Retrace: Collecting execution trace with
virtual machine deterministic replay. In Proceedings of
the Third Annual Workshop on Modeling, Benchmarking
and Simulation (MoBS 2007), 2007.

[65] Seyed Mohammadjavad Seyed Talebi, Zhihao Yao,
Ardalan Amiri Sani, Zhiyun Qian, and Daniel Austin.
Undo workarounds for kernel bugs. In 30th USENIX
Security Symposium (USENIX Security 21), pages 2381–
2398. USENIX Association, August 2021.

[66] Jun Xu, Dongliang Mu, Xinyu Xing, Peng Liu, Ping
Chen, and Bing Mao. Postmortem program analysis
with Hardware-Enhanced Post-Crash artifacts. In 26th
USENIX Security Symposium (USENIX Security 17),
pages 17–32, Vancouver, BC, August 2017. USENIX
Association.

[67] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-
soo Kim. Krace: Data race fuzzing for kernel file sys-
tems. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1643–1660, 2020.

[68] Min Xu, Rastislav Bodik, and Mark D. Hill. A “flight
data recorder” for enabling full-system multiprocessor
deterministic replay. In Proceedings of the 30th annual
international symposium on Computer architecture -
ISCA ’03, ISCA ’03. ACM Press, 2003.

[69] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Tae-
soo Kim. Designing new operating primitives to im-
prove fuzzing performance. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’17, page 2313–2328. ACM,
October 2017.

[70] Hyunmin Yoon, Shakaiba Majeed, and Minsoo Ryu. Ex-
ploring os-based full-system deterministic replay. In
Proceedings of the 33rd Annual ACM Symposium on
Applied Computing, SAC 2018, page 1077–1086. ACM,
April 2018.

[71] Cristian Zamfir and George Candea. Execution synthe-
sis: a technique for automated software debugging. In
Proceedings of the 5th European conference on Com-
puter systems, EuroSys ’10. ACM, April 2010.

[72] Irene Zhang, Amanda Raybuck, Pratyush Patel, Kirk
Olynyk, Jacob Nelson, Omar S. Navarro Leija, Ash-
lie Martinez, Jing Liu, Anna Kornfeld Simpson, Sujay
Jayakar, Pedro Henrique Penna, Max Demoulin, Piali
Choudhury, and Anirudh Badam. The demikernel dat-
apath os architecture for microsecond-scale datacenter
systems. In Proceedings of the ACM SIGOPS 28th Sym-
posium on Operating Systems Principles, SOSP ’21,
page 195–211, New York, NY, USA, 2021. Association
for Computing Machinery.



[73] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm,
and Ding Yuan. The inflection point hypothesis: a prin-
cipled debugging approach for locating the root cause
of a failure. In Proceedings of the 27th ACM Sympo-
sium on Operating Systems Principles, SOSP ’19, page
131–146, New York, NY, USA, 2019. Association for
Computing Machinery.

[74] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. On-
demand-fork: a microsecond fork for memory-intensive
and latency-sensitive applications. In Proceedings of the
Sixteenth European Conference on Computer Systems,
EuroSys ’21, page 540–555. ACM, April 2021.

[75] Xiaochen Zou, Yu Hao, Zheng Zhang, Juefei Pu, Weit-
eng Chen, and Zhiyun Qian. Syzbridge: Bridging the
gap in exploitability assessment of linux kernel bugs in
the linux ecosystem. In Proceedings 2024 Network and
Distributed System Security Symposium, NDSS 2024.
Internet Society, 2024.

[76] Gefei Zuo, Jiacheng Ma, Andrew Quinn, Pramod Bhato-
tia, Pedro Fonseca, and Baris Kasikci. Execution recon-
struction: harnessing failure reoccurrences for failure
reproduction. In Proceedings of the 42nd ACM SIG-
PLAN International Conference on Programming Lan-
guage Design and Implementation, PLDI ’21. ACM,
June 2021.


	Introduction
	Sliced Record Replay
	Goals and Assumptions
	Efficient and Scalable Kernel RR

	KRR Design
	Kernel Input from User-space
	Kernel Input from Hardware
	Asynchronous Event Timing

	Kernel Schedule
	Initial Kernel State
	Replayer

	Implementation
	Validation

	Evaluation
	Recording multi-core workloads
	RocksDB
	Kernel Compilation

	Recording Kernel-bypassing Workloads
	RocksDB with SPDK
	Redis with DPDK
	Nginx with DPDK

	Reproduce kernel bugs using KRR
	Storage Cost
	Replay Performance

	Discussion
	Related Work
	Conclusion

