
Snowboard: Finding Kernel Concurrency Bugs through Systematic Inter-thread Communication Analysis
Sishuai Gong (Purdue University)           Deniz Altınbüken (Google Research)

Pedro Fonseca (Purdue University)        Petros Maniatis (Google Research)

Problem and Key Idea

MemoryThread 1 Thread 2

p = null;
w

Approach

2. Prioritize PMCs

3. Test PMCs
Approach (cond.)

Impact

Fixed kernel 
state 

syscall_A(…)

syscall_F(…)

Profile-1

p = null;

Mem

Sequential

execution

Artifact
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2. Extensive interleaving space
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