
Snowboard: Finding Kernel Concurrency Bugs through Systematic Inter-thread Communication Analysis
Sishuai Gong (Purdue University) Deniz Altınbüken (Google Research)

Pedro Fonseca (Purdue University) Petros Maniatis (Google Research)

Problem and Key Idea

MemoryThread 1 Thread 2

p = null;
w

Approach

2. Prioritize PMCs

3. Test PMCs
Approach (cond.)

Impact

Fixed kernel
state

syscall_A(…)

syscall_F(…)

Profile-1

p = null;

Mem

Sequential

execution

Artifact

https://github.com/rssys/snowboard

syscall_A(…)

syscall_F(…)

syscall_C(…)

syscall_H(…)

Thread 1 Thread 2

Fixed kernel state

Effective in finding new kernel
concurrency bugs hat

- had serious impact (e.g., panics)

- existed for years (e.g., 10 years)

Pair of write and read accesses to shared resources by
different write and read values

p = 0xA;

…

if (p)

 correct_path();

else

 panic();

r

Potential Memory Communication (PMC)

1. Massive concurrent input space

syscall_A(…)

syscall_F(…)

syscall_C(…)

syscall_H(…)

Kernel concurrent input
(1) 400+ syscalls
(2) Various parameters
(3) Complex dependency

2. Extensive interleaving space

1E+04

1E+08

1 2 5 10 20

Avg. # of instructions in 2 threads

of possible

interleavings

(1) Too many possible
interleavings

(2) Only a few of them

expose bugs

Testing PMCs reveals concurrency bugs

1. Find PMCs

syscall_C(…)

syscall_H(…)

Profile-2

if (p)

Fixed kernel
state

Mem p = 0xA;
…

Sequential

execution

a write and a read
access same memory
valuewrite != valueread

A PMCw

r

Cluster similar PMCs

Prioritize smaller clusters

Sample a PMC from each cluster

a unique PMC

Testing priority

a PMC sampled to test

Concurrent

execution

p = null;

if (p)

 correct_path();

else

 panic();

w

Mem

r

Cluster A Cluster B

