
Snowboard: Finding Kernel Concurrency Bugs through
Systematic Inter-thread Communication Analysis

Sishuai Gong (Purdue University) Deniz Altınbüken (Google Research)

Pedro Fonseca (Purdue University) Petros Maniatis (Google Research)

A Linux kernel concurrency bug

seek()

list_delete(&node, …);
… // modify a node
list_add(&node, …);

lookup()

list_for_each_entry(…, node){
… // checks on every node
}

Delete, modify and re-insert a node Walk over each node and check

A Linux kernel concurrency bug

list_delete(&node, …);
… // modify a node
list_add(&node, …);

list_for_each_entry(…, node){
… // checks on every node
}

Kernel thread 1—running seek() Kernel thread 2—running lookup()

A Linux kernel concurrency bug

Kernel thread 1—running seek()

list_delete(&node, …);
… // modify a node
list_add(&node, …);

Kernel thread 2—running lookup()

list_for_each_entry(…, node){
… // checks on every node
}

Kernel panic:
Null pointer deference

This bug existed in the kernel for over 14 years until Snowboard found it :)

Challenge 2:
Find error-inducing interleavings

Kernel
thread A

Kernel
thread B

Challenge 1:
Find error-inducing concurrent inputs

Concurrent input

?

?

?

?

?

?

Thread A Thread B

Kernel

Challenges in finding concurrency bugs

Finding concurrent inputs is challenging

400+ system calls

Various parameters

Data/control dependencies

Concurrent input

syscall_A

syscall_F

syscall_O

syscall_X

syscall_E

syscall_Z

(X, Y, Z)

(P, Q, R)

(K, D)

(H, M)

(G, S, S)

(A, L, M)

P=

S=

Concurrent input

?

?

?

?

?

?

Thread A Thread B

Kernel

Finding concurrent inputs + interleavings is even more challenging

Concurrent input

syscall_A

syscall_F

syscall_O

syscall_X

syscall_E

syscall_Z

(X, Y, Z)

(P, Q, R)

(K, D)

(H, M)

(G, S, S)

(A, L, M)

P=

S=

Too many possible interleavings

Only a few interleavings expose the bug

1

100

10,000

1,000,000

100,000,000

10,000,000,000

1 2 5 10 20

Avg. # of instructions in 2 threads

of possible
interleavings

Thread A Thread B

Kernel

…1,000,000

How does Snowboard find concurrency bugs?

Kernel
thread A

Kernel
thread B

Concurrent input

?

?

?

?

?

?

Thread A Thread B

Kernel

1. Predict thread interactions 2. Explore interaction interleavings

Potential memory communication

Kernel thread 1 Kernel thread 2

list_del(&node, …);
…

list_for_each_entry(…, node) {
…}

Shared
memory

write read

“write before read” or “write after read”?

a PMC

Shared
memory

Kernel thread 1 Kernel thread 2

list_delete(&node, …);
…

list_for_each_entry(…, node) {
…}

PMC interleaving

Shared
memory

Kernel thread 1 Kernel thread 2

list_delete(&node, …);
… list_for_each_entry(…, node) {

…} New data/control flow

Inconsistent data

write before read

write after read

Interleavings of the PMC can lead to concurrency issues

write read

readwrite

Snowboard finds concurrency bugs by testing PMCs

1. Find PMCs

Dynamic sequential
input analysis

PMC 1

PMC 2
PMC 3

…

2. Prioritize PMCs

Cluster A Cluster B

Clustering strategy

3. Test PMCs

thread 1 thread 2

write
read

PMC interleaving
exploration

Find kernel PMCs—Possible approaches

Approach 1: Brute-force search Approach 2: Static analysis

list_delete(&s_sibling);
…

list_for_each_entry(sd, …, s_sibling) {
…

Concurrent input
slot machine

syscall_A syscall_B
syscall_C

syscall_D

syscall_F

syscall_E

PMC?

ImpreciseDoes not scale

Find kernel PMCs—Our approach

Snowboard

Dynamic sequential
input analysis

Input

Sequential input 3

syscall_A

syscall_F

syscall_O

(X, Y, Z)

(P, Q, R)

(K, D)P=

Sequential input 2

syscall_A

syscall_F

syscall_O

(X, Y, Z)

(P, Q, R)

(K, D)P=

Sequential input 1

syscall_A

syscall_F

syscall_O

(X, Y, Z)

(P, Q, R)

(K, D)P=

Output

PMC-1
PMC-2
PMC-3

…

Kernel PMC list

Dynamic sequential input analysis

syscall_A(X, Y, Z)

syscall_F(P, Q, R)

syscall_O(K, D)

Single-thread execution profile

syscall_X(H, M)

syscall_E(G, S, S)

syscall_Z(A, L, M)

Single-thread execution profile

Kernel Kernel

Execution profileShared
memory

Fixed kernel state

Shared
memory

Execution profile

write
memory
access

read
memory
access

a PMC

Arbitrary kernel states?Arbitrary kernel states?

Snowboard finds concurrency bugs by testing PMCs

1. Find PMCs

Dynamic sequential
input analysis

PMC 1

PMC 2
PMC 3

…

2. Prioritize PMCs

Cluster A Cluster B

Clustering strategy

3. Test PMCs

thread 1 thread 2

write
read

PMC interleaving
exploration

Prioritize PMCs

Why do we need to prioritize PMCs?

PMC-1
PMC-2
PMC-3

…

Kernel PMC list

Testing PMCs is expensive

e.g., controlling kernel interleavings is expensive

Too many PMCs in the kernel

e.g., we identified 161B PMCs in Linux

Clustering strategy

a unique PMC

Cluster A

Cluster BCluster similar PMCs

Since testing similar execution is
less rewarding

Clustering strategy

Prioritize small clusters

a unique PMC

1st cluster to test 2nd cluster to test

Cluster A

Cluster B

Since these are less likely to be
tested

Cluster similar PMCs

Since testing similar execution is
less rewarding

Clustering strategy

Sample a PMC from each cluster

a unique PMC

1st cluster to test 2nd cluster to test

Prioritize small clusters

Cluster similar PMCs

Since testing similar execution is
less rewarding

Since the rest of the PMCs are
similar

prioritized PMC

Since these are less likely to be
tested

Cluster A

Cluster B

Snowboard finds concurrency bugs by testing PMCs

1. Find PMCs

Dynamic sequential
input analysis

PMC 1

PMC 2
PMC 3

…

2. Prioritize PMCs

Cluster A Cluster B

Clustering strategy

3. Test PMCs

thread 1 thread 2

write
read

PMC interleaving
exploration

Kernel

Thread 1 Thread 2

Test PMCs

syscall_A(X, Y, Z)

syscall_F(P, Q, R)

syscall_O(K, D)

syscall_X(H, M)

syscall_E(G, S, S)

syscall_Z(A, L, M)

PMC testing (Concurrent execution)

write

Shared
memory

Fixed kernel state

read

Interleaving explorationInterleaving exploration Bug detection

Evaluation

We applied Snowboard to recent Linux kernel releases

Bug 14

Bug 1Bug 1Bug 1Bug 1

Some bugs existed for years.

Many bugs have serious impact (e.g.
kernel panics, filesystem error).

Evaluation

0
1
2
3
4
5
6
7

Snowboard
Random

Concurrent input
generation

Number of
concurrency

issues

Evaluation

0
1
2
3
4
5
6
7

Snowboard
Random

Concurrent input
generation

Number of
concurrency

issues

See paper for more details :)

1. Find PMCs

Dynamic sequential
input analysis

PMC 1

PMC 2
PMC 3

…

2. Prioritize PMCs

Cluster A Cluster B

Clustering strategy

3. Test PMCs

thread 1 thread 2

write
read

PMC testing

Snowboard Kernel concurrency bugs

Potential memory communication (PMC)

Pair of write and read accesses to shared resources

https://github.com/
rssys/snowboard

Effective in
finding new

concurrency bugs

