Snowboard: Finding Kernel Concurrency Bugs through
Systematic Inter-thread Communication Analysis

Sishuai Gong (Purdue University) Deniz Altinblken (Google Research)

Pedro Fonseca (Purdue University) Petros Maniatis (Google Research)

7 =) PURDUE 2 systems Google Research

UNIVERSITY.

A Linux kernel concurrency bug

seek() lookup()
list delete(&node, ...); list_for_each_entry(..., node){
... // modify a node ... // checks on every node
list add(&node, ...); }

Delete, modify and re-insert a node Walk over each node and check

A Linux kernel concurrency bug

Kernel thread 1—running seek() Kernel thread 2—running lookup()
@ list delete(&node, ...); 9Iist_for_each_entry(..., node){
... // modify a node ... // checks on every node

list add(&node, ...); }

A Linux kernel concurrency bug

Kernel thread 1T—running seek() Kernel thread 2—running lookup()
@ list delete(&node, ...); ®list for_each_entry(..., node){
... // modify a node ... // checks on ev Kernel panic:
. {
list_add(&node, ...); ; 2“8 Null pointer deference

This bug existed in the kernel for over 14 years | until Snowboard found it :)

Challenges in finding concurrency bugs

Challenge 1: Challenge 2:
Find error-inducing concurrent inputs Find error-inducing interleavings

Concurrent input

Kernel Kernel
* thread A thread B

. 4
Kernel 9% ; ag

Th regad A Th regad‘B eé <§>>

Finding concurrent inputs is challenging

Concurrent input

syscall_A(X, Y, Z) S=syscall_X(H, M)

syscall_E(G, S, S
Concurrent input — yscall_E()

syscall_F(P, Q, R) syscall_Z(A, L, M)

400+ system calls

Kernel

o ©
.
Data/control dependencies

Thread A Thread B
; &

Finding concurrent inputs + interleavings is even more challenging !
|

I
10,000,000,000
Concurrent input 100.000 000
1,000,000
syscall_A(X, Y, Z) S=syscall_X(H, M)
of possible 19.000
syscaII_F(P, Q. R) syscaII_Z(A, L, M) 1 2 5 10 20 ...1,000,000
* ‘ Avg. # of instructions in 2 threads
Kernel

Thread A Thread B e :
§ § E Too many possible interleavings
1

\

Only a few interleavings expose the bug

How does Snowboard find concurrency bugs?

1. Predict thread interactions 2. Explore interaction interleavings

Concurrent input

Kernel Kernel

thread A thread B
4 4 0!
Kernel O: 5

Th reéad A Th rega df O:; <§>>

Potential memory communication

Kernel thread 1 Shared Kernel thread 2
list del(&node, ...); memory list_for_each_entry(..., node) {
.}
Write read
a PMC

“write before read” or “write after read”?

PMC interleaving

Kernel thread 1 Kernel thread 2

read

list_delete(&node, ...); d»

o o list_for_each_entry(..., node) {

-} New data/control flow

Interleavings of the PMC can lead to concurrency issues

Shared
memory

write before read

Kernel thread 1 Shared Kernel thread 2

list delete(&node, ...); \&;

wiite | read |
Inconsistent data

write after read

memor
4 (1) list_for_each_entry(..., node) {

Snowboard finds concurrency bugs by testing PMCs

1. Find PMCs 2. Prioritize PMCs 3. Test PMCs
Dyr.1am|c sequeptlal Clustering strategy PMC interle.aving
input analysis exploration

Cluster B thread 1 thread 2

? é

© rite ; Oread
%

Cluster A

Find kernel PMCs—Possible approaches

Approach 1: Brute-force search Approach 2: Static analysis
Concurrent input PMC?
| PU list_delete(&s_sibling);
slot machine
syscall_C syscall_F
syscall_A syscall_B |
syscall D syscall E list_for_each_entry(

Does not scale Imprecise

Find kernel PMCs—Our approach

Input Snowboard

Sequential input 3
Sequential input 2

Sequential input 1
» Dynamic sequential
syscall_A(X, Y, Z) input analysis

P=syscall_O(K, D)

syscall_F(P, Q, R)

-

Output

Kernel PMC list

PMC-1
PMC-2

PMC-3

Dynamic sequential input analysis

Single-thread execution profile Single-thread execution profile

syscall_A(X, Y, Z)

syscall_X(H, M)

syscall_E(G, S, S)

syscall_O(K, D) syscall_Z(A, L, M)

— ¢ (resremeisae])
write

memory
access Execution profile Shared Shared Execution profile
| ‘ memoryl ‘ memory |
a PMC %
read
access

Snowboard finds concurrency bugs by testing PMCs

1. Find PMCs 2. Prioritize PMCs 3. Test PMCs

Dynamic sequential : ' '
4 quet Clustering strategy PMC interleaving
input analysis exploration

Cluster B thread 1 thread 2

? %

© rite ; Qread
%

Cluster A

Prioritize PMC(Cs

Why do we need to prioritize PMCs?

0 Too many PMCs in the kernel
e.g., we identified 161B PMCs in Linux

Kernel PMC list

PMC-1
PMC-2
PMC-3

Q Testing PMCs is expensive

e.g., controlling kernel interleavings is expensive

Clustering strategy

©® Cluster similar PMCs Cluster B

Since testing similar execution is
Cluster A

less rewarding

‘ a unigue PMC

Clustering strategy

Cluster similar PMCs

Since testing similar execution is
less rewarding

Prioritize small clusters

Since these are less likely to be
tested

Cluster A

1st cluster to test

Cluster B

2nd cluster to test

‘ a unigue PMC

Clustering strategy

©® Cluster similar PMCs

Since testing similar execution is
less rewarding

©®© Prioritize small clusters

Since these are less likely to be
tested

©® Sample a PMC from each cluster

Since the rest of the PMCs are
similar

Cluster A

1st cluster to test

‘ prioritized PMC

Cluster B

2nd cluster to test

‘ a unigue PMC

Snowboard finds concurrency bugs by testing PMCs

1. Find PMCs 2. Prioritize PMCs 3. Test PMCs

Dynamic sequential : ' '
4 quet Clustering strategy PMC interleaving
input analysis exploration

Cluster B thread 1 thread 2

? %

© rite ; Qread
%

Cluster A

Test PMCs

PMC testing (Concurrent execution)

syscall_A(X, Y, Z) syscall_X(H, M)

syscall_O(K, D) Fixed kernel state —

Kernel

Thread 1 Shared Thread 2
§ memory g

; Interleaving exploration

7=\
V=%

Bug detection

Evaluation

We applied Snowboard to recent Linux kernel releases

Bug 14
— @ Many bugs have serious impact (e.g.
us kernel panics, filesystem error).
-
e ® o © Some bugs existed for years.

Evaluation

7 .
6 |
5 |
Number of 4
concurrency
issues 3
2 |
3
O _
Random
Snhowboard Concurrent input

generation

Evaluation

‘ See paper for more details :)

Snowboard ﬁ Kernel concurrency bugs =N
N/ .
Potential memory communication (PMC)]Effg.ctlve n https://github.com/
inding new

Pair of write and read accesses to shared resources concurrency bugs rssys/snowboard

1. Find PMCs 2. Prioritize PMCs 3. Test PMCs

Dynamic sequential : :
input analysis Clustering strategy PMC testing
Cluster B thread 1 thread 2

Cluster A

:

:
@ rite ; Qread
%

