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Snowcat

Sim2Real: Robotic Transfer Learning
Konstantinos Bousmalis*, Jackie Kay*, Rae Jeong*, Michael King*, Yuxiang Zhou*, Yusuf Aytar, Steve Bohez, Carl Doersch, David Khosid,

Dushyant Rao, Markus Wulfmeier, Alex Irpan, Julian Ibarz, Kanishka Rao, Alex Lee, Sergey Levine, Nicole Hurley, Chloe Hillier, Raia Hadsell, Francesco 
Nori * Core Contributors

● Train for 3D pose estimation on synthetic human videos; test on real 
humans

● Motion is key: our best model first extracts optical flow + keypoint 
motion before directly regressing pose

● Motion-based model achieves 74.7 PA-MPJPE Error on 3DPW dataset, 
vs. 105.6 for RGB-only baseline and 72.2 for SOTA model trained on real 
data.

Model-Based Multi-Domain RL
A domain-invariant source-trained value function can be used in a target domain with a 
model-based approach if the value is placed far enough in the future. The dynamics 
model is learned e2e with target data.
The method worked well in sim-to-real transfer for pixel-based cube REACH 

Randomized-to-Canonical 
Networks 
RCAN is a real-to-sim image translator trained with domain 
randomization:
● We define a “canonical” version of simulation
● We train a pix2pix model to convert randomized sim 
● Images to equivalent canonical versions

Introduction
Top Goals: 
● Reducing real-world sample complexity for the 

image-based versions of the Lego Benchmarks
● Representation learning for transfer and control
● Finetuning without catastrophic forgetting
● Off-policy evaluation
● Tackling the dynamics domain gap
● Tools and baselines for future work

Main Outcomes:
● Very high zero-shot performance for image-based

REACH and LIFT (with 1 and 3 blocks in the basket)
● Significantly sped-up training of manipulation tasks

in simulation with our Multi-Environment Off-policy (MEO) 
agent

● Off-policy metric that works well for binary-reward tasks, 
also evaluated for sim2real transfer

● Multi-domain RL, a model-based method, works for 
REACH with dynamics trained in the real-world and reward 
and value predictors trained only with sim data

● Proposed the use of optical flow for sim2real 3D pose est.

Reducing Real-World Sample Complexity for Image-Based Cube Lifting

As part of this cycle:
● Integrated RCAN with our ACME MPO agent
● Trained task-agnostic RCAN for the Manipulation 

PlayGround
● Transfer for REACH and LIFT tasks

MPO Input Real Episodes Lift Success Reward Avg. Reward Std.

Sim-only 0 0.0% (0/75) 0.10 0.44

Domain Randomisation 0 62.7% (47/75) 75.59 63.09

RCAN 0 93.3% (70/75) 95.42 49.41

RCAN + Naive fine-tuning 500 94.7% (71/75) 126.28 39.09

RCAN + Joint fine-tuning 500 97.3% (73/75) 133.11 28.74

RCAN + Joint fine-tuning 500 89.3% (67/75) 118.50 46.79

RCAN + Naive fine-tuning 1200 100% (75/75) 136.73 18.64

RCAN + Joint fine-tuning 1200 98.7% (74/75) 135.59 26.21

RCAN + Joint fine-tuning 1200 98.7% (74/75) 138.23 24.73

Real-only (Not available) (old setup~10K) ? >130 ?

RCAN + MPO Agent
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Sim2Sim Walker Results
● The source domain is 

randomized
● The target domain has 

deterministically delayed 
actions, a deterministic 
generalized force 
perturbance and lower 
friction.

Model-Based Multi-Domain RL

Adaptation Stack Success Reward Avg. Reward Std.

Randomization 46% 29.3 49.7

DANN 56% 38.0 52.6

TCN 62% 45.9 53.1

Sim2Real for 3D Pose Estimation
Model-Based Multi-Domain RL
Existing off-policy evaluation (OPE) metrics rely on accurate models or IS
● Many methods (eg. DQL, DDPG) cannot use IS
● Accurate models for images is an open research question
We propose an OPE method that:
● does not rely on models or IS
● relies on Positive-Unlabeled classification for a metric for binary-reward tasks
We show that our metric:
● can approximate the expected return in deterministic binary reward MDPs.
● correlates with performance across several environments.
● is useful for model selection for a number of generalization failure scenarios, 

including Sim2Real transfer with varied amounts of data.
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Papers From This Cycle
RCAN, CVPR 2019 accepted
NEURIPS 2019 submissions
Off-Policy Evaluation via Off-Policy 
Classification
Sim2real Transfer Learning for 3D 
Pose Estimation

CORL 2019 potential submissions 
(July 7)

Model-based Multi-domain 
Reinforcement Learning

Self-supervised Sequence 
Regularization for Visual Adaptation

● Can be useful for 
unsupervised domain 
adaptation.

● Evaluated stacking 
with a zero-shot 
policy

● Did not use real-world 
rewards for 
unsupervised 
adaptation (DANN, 
TCN)

● Good zero-shot 
stacking success!



Finding kernel concurrency bugs is important

• Bugs that depend on the instruction schedules.

• Such bugs have serious impact.

Root cause: a kernel concurrency bug



Find kernel concurrency bugs through testing

Ordering requirements


Test Execution
Kernel

Schedule

Input Input

Test Generation
Input (program)

s = syscall_1(…)

syscall_2(s, …)

Ordering requirements

Kernel 
thread A

Kernel 
thread B



Prior work focuses on optimizing test generation

Snowboard [SOSP’21],

Razzer [SP’19], Krace [SP’20]

Input InputInput InputInput Input

Find effective pairs of inputs

Test Execution
Kernel

Schedule

Input Input

Test Generation



Redundant tests reduce the testing efficiency

Test 
result

Test 
result

Test 
result

Redundant tests
Interesting tests

Too many

redundant tests

Test Execution
Kernel

Each execution is expensive

• 2.8 seconds per test

• 1M redundant tests waste 1 month of machine time

Schedule

Input Input

Test Generation



Identify and only execute interesting tests

Test Execution
Kernel

Test Filtering

interesting?
No

Yes

Test 
result

Test 
result

Test 
result

Redundant tests
Interesting tests

Only interesting tests

Schedule

Input Input

Test GenerationSupport any

generation techniques



What are interesting tests?
Thread a Thread b

x = “A”

…

if (x == “B”) {


handle_issue()

}

x = “B”

Coverage of different schedules

Schedule 2

x = “B”

x = “A”

…


if (x == “B”) {

handle_issue()


}
New code executed.


Interesting!

Schedule 1
x = “B”

x = “A”

…

if (x == “B”) {


handle_issue()

}

Redundant test



Snowcat predicts the kernel coverage for concurrency tests

Schedule

Input Input

Coverage

Predictor Machine learning

Effective in predicting application coverage



Challenges in using ML to build the predictor

1. How to encode

a concurrency test to the model?

• Inputs are userspace programs

• Schedule is kernel threads ordering

2. How to predict much faster 
than execute?

• Predicting a full kernel CFG takes ~3s.

• A concurrent execution takes ~2s.

Schedule

Input Input

Coverage

Predictor



1. Represent the schedule on two sequential control flows

ScheduleInput A Input B Kernel control flow 
triggered by input A

Kernel control flow 
triggered by input B

Schedule

(ordering edge)

Profile kernel

sequential execution 

Extract thread

ordering requirements

Predict the coverage for

this concurrent execution

x = “A”

…

if (x == “B”) {


handle_issue()

}

Input A

Kernel x = “B”
x = “A”

Thread BThread A



2. Predict faster by only considering adjacent uncovered blocks

If it is covered, the 
control flow must 

have diverged.

Kernel control flow 
triggered by input A

Kernel control flow 
triggered by input B

Schedule

(ordering edge)

Adjacent uncovered blocks

“Hey model:

please predict the coverage 
of each block in this graph”


Input A

Kernel

x = “A”

…

if (x == “B”) {


handle_issue()

}

A tiny subset of all kernel code blocks



Snowcat encodes even more information in the graph

Kernel control flow 
triggered by input A

Kernel control flow 
triggered by input B

Schedule

(ordering edge)

Adjacent uncovered blocks

Possible data flows



Model architectureTraining dataset

Implementation of Snowcat

• Data

1.3M tests and their coverage

• Kernel version

Linux kernel 5.12

• Code block encoder


• Graph neural networks

1. Build the predictor using ML

2. Use the predictor for testing

Predictor integration

• PCT [ASPLOS’10]

• Razzer [SP’19]

• Snowboard [SOSP’21]
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Testing Linux kernel 5.12

Snowcat
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Snowcat improves testing efficiency significantly

Testing time in days

Number of 
data races

~350 more data races

~6 days faster



Snowcat is effective in finding new bugs

Bug 17
Bug 1Bug 1Bug 1Bug 1

13 confirmed (6 fixed)

fs/, net/, drivers/, …

Data loss, DDos, …

New concurrency bugs

found in Linux kernel Existed for years (e.g, 10)



Concern about training cost

Collect data,

train model

Test

kernel

Linux kernel

5.12

Kernel

version Y

Test

kernel

Collect data,

train model

10 days

Can be reduced or

even skipped



Reuse the model for the new kernel

Collect data,

train model

Test

kernel

Linux kernel

5.12

Kernel

version Y

Test

kernel

Reuse the 
model

10 days



The model is still effective on the new kernel

2

2000

Testing time in days

Number of 
possible 

data races

3 4 5 6 71

1000

3000

PCT
Snowcat (old model)

~1.5 days faster

Testing Linux kernel 5.13

Similar results found

when testing Linux kernel 6.1



Reuse the model for the new kernel

Collect data,

train model

Test

kernel

Linux kernel

5.12

Linux kernel

5.13

Test

kernel

Reuse the 
model

10 days

The foundational model works well even on new kernels



Fine tune the model for the new kernel

Collect data,

train model

Test

kernel

Linux kernel

5.12

Linux kernel

5.13

Test

kernel

Fine tuning

Collect data,

train model

1 day

The fine-tuned model brings higher efficiency

10 days 3 days saved 
out of 7



You’re welcome to read the paper

More details 

• Test Linux 6.1

• Concurrency bug reproduction

• Existing framework integration



Key takeaway from Snowcat

Improve kernel concurrency testing using ML 
Predict kernel coverage for concurrency tests

Efficient and effective https://github.com/

rssys/snowcat

https://github.com/

