
Snowcat: Efficient Kernel Concurrency Testing
using a Learned Coverage Predictor

Sishuai Gong1, Dinglan Peng1, Deniz Altınbüken2, Pedro Fonseca1, Petros Maniatis2

1Purdue University 2Google DeepMind

Snowcat

Sim2Real: Robotic Transfer Learning
Konstantinos Bousmalis*, Jackie Kay*, Rae Jeong*, Michael King*, Yuxiang Zhou*, Yusuf Aytar, Steve Bohez, Carl Doersch, David Khosid,

Dushyant Rao, Markus Wulfmeier, Alex Irpan, Julian Ibarz, Kanishka Rao, Alex Lee, Sergey Levine, Nicole Hurley, Chloe Hillier, Raia Hadsell, Francesco
Nori * Core Contributors

● Train for 3D pose estimation on synthetic human videos; test on real
humans

● Motion is key: our best model first extracts optical flow + keypoint
motion before directly regressing pose

● Motion-based model achieves 74.7 PA-MPJPE Error on 3DPW dataset,
vs. 105.6 for RGB-only baseline and 72.2 for SOTA model trained on real
data.

Model-Based Multi-Domain RL
A domain-invariant source-trained value function can be used in a target domain with a
model-based approach if the value is placed far enough in the future. The dynamics
model is learned e2e with target data.
The method worked well in sim-to-real transfer for pixel-based cube REACH

Randomized-to-Canonical
Networks
RCAN is a real-to-sim image translator trained with domain
randomization:
● We define a “canonical” version of simulation
● We train a pix2pix model to convert randomized sim
● Images to equivalent canonical versions

Introduction
Top Goals:
● Reducing real-world sample complexity for the

image-based versions of the Lego Benchmarks
● Representation learning for transfer and control
● Finetuning without catastrophic forgetting
● Off-policy evaluation
● Tackling the dynamics domain gap
● Tools and baselines for future work

Main Outcomes:
● Very high zero-shot performance for image-based

REACH and LIFT (with 1 and 3 blocks in the basket)
● Significantly sped-up training of manipulation tasks

in simulation with our Multi-Environment Off-policy (MEO)
agent

● Off-policy metric that works well for binary-reward tasks,
also evaluated for sim2real transfer

● Multi-domain RL, a model-based method, works for
REACH with dynamics trained in the real-world and reward
and value predictors trained only with sim data

● Proposed the use of optical flow for sim2real 3D pose est.

Reducing Real-World Sample Complexity for Image-Based Cube Lifting

As part of this cycle:
● Integrated RCAN with our ACME MPO agent
● Trained task-agnostic RCAN for the Manipulation

PlayGround
● Transfer for REACH and LIFT tasks

MPO Input Real Episodes Lift Success Reward Avg. Reward Std.

Sim-only 0 0.0% (0/75) 0.10 0.44

Domain Randomisation 0 62.7% (47/75) 75.59 63.09

RCAN 0 93.3% (70/75) 95.42 49.41

RCAN + Naive fine-tuning 500 94.7% (71/75) 126.28 39.09

RCAN + Joint fine-tuning 500 97.3% (73/75) 133.11 28.74

RCAN + Joint fine-tuning 500 89.3% (67/75) 118.50 46.79

RCAN + Naive fine-tuning 1200 100% (75/75) 136.73 18.64

RCAN + Joint fine-tuning 1200 98.7% (74/75) 135.59 26.21

RCAN + Joint fine-tuning 1200 98.7% (74/75) 138.23 24.73

Real-only (Not available) (old setup~10K) ? >130 ?

RCAN + MPO Agent

G

Real Adapted

fixed

Proprio

𝑄

𝛑

Sim2Sim Walker Results
● The source domain is

randomized
● The target domain has

deterministically delayed
actions, a deterministic
generalized force
perturbance and lower
friction.

Model-Based Multi-Domain RL

Adaptation Stack Success Reward Avg. Reward Std.

Randomization 46% 29.3 49.7

DANN 56% 38.0 52.6

TCN 62% 45.9 53.1

Sim2Real for 3D Pose Estimation
Model-Based Multi-Domain RL
Existing off-policy evaluation (OPE) metrics rely on accurate models or IS
● Many methods (eg. DQL, DDPG) cannot use IS
● Accurate models for images is an open research question
We propose an OPE method that:
● does not rely on models or IS
● relies on Positive-Unlabeled classification for a metric for binary-reward tasks
We show that our metric:
● can approximate the expected return in deterministic binary reward MDPs.
● correlates with performance across several environments.
● is useful for model selection for a number of generalization failure scenarios,

including Sim2Real transfer with varied amounts of data.

G

Randomized

D
adapted/
canonical

Adapted

Canonical

Papers From This Cycle
RCAN, CVPR 2019 accepted
NEURIPS 2019 submissions
Off-Policy Evaluation via Off-Policy
Classification
Sim2real Transfer Learning for 3D
Pose Estimation

CORL 2019 potential submissions
(July 7)

Model-based Multi-domain
Reinforcement Learning

Self-supervised Sequence
Regularization for Visual Adaptation

● Can be useful for
unsupervised domain
adaptation.

● Evaluated stacking
with a zero-shot
policy

● Did not use real-world
rewards for
unsupervised
adaptation (DANN,
TCN)

● Good zero-shot
stacking success!

Finding kernel concurrency bugs is important

• Bugs that depend on the instruction schedules.

• Such bugs have serious impact.

Root cause: a kernel concurrency bug

Find kernel concurrency bugs through testing

Ordering requirements

Test Execution
Kernel

Schedule

Input Input

Test Generation
Input (program)

s = syscall_1(…)

syscall_2(s, …)

Ordering requirements

Kernel
thread A

Kernel
thread B

Prior work focuses on optimizing test generation

Snowboard [SOSP’21],

Razzer [SP’19], Krace [SP’20]

Input InputInput InputInput Input

Find effective pairs of inputs

Test Execution
Kernel

Schedule

Input Input

Test Generation

Redundant tests reduce the testing efficiency

Test
result

Test
result

Test
result

Redundant tests
Interesting tests

Too many

redundant tests

Test Execution
Kernel

Each execution is expensive

• 2.8 seconds per test

• 1M redundant tests waste 1 month of machine time

Schedule

Input Input

Test Generation

Identify and only execute interesting tests

Test Execution
Kernel

Test Filtering

interesting?
No

Yes

Test
result

Test
result

Test
result

Redundant tests
Interesting tests

Only interesting tests

Schedule

Input Input

Test GenerationSupport any

generation techniques

What are interesting tests?
Thread a Thread b

x = “A”

…

if (x == “B”) {

handle_issue()

}

x = “B”

Coverage of different schedules

Schedule 2

x = “B”

x = “A”

…

if (x == “B”) {

handle_issue()

}
New code executed.

Interesting!

Schedule 1
x = “B”

x = “A”

…

if (x == “B”) {

handle_issue()

}

Redundant test

Snowcat predicts the kernel coverage for concurrency tests

Schedule

Input Input

Coverage

Predictor Machine learning

Effective in predicting application coverage

Challenges in using ML to build the predictor

1. How to encode

a concurrency test to the model?

• Inputs are userspace programs

• Schedule is kernel threads ordering

2. How to predict much faster
than execute?

• Predicting a full kernel CFG takes ~3s.

• A concurrent execution takes ~2s.

Schedule

Input Input

Coverage

Predictor

1. Represent the schedule on two sequential control flows

ScheduleInput A Input B Kernel control flow
triggered by input A

Kernel control flow
triggered by input B

Schedule

(ordering edge)

Profile kernel

sequential execution

Extract thread

ordering requirements

Predict the coverage for

this concurrent execution

x = “A”

…

if (x == “B”) {

handle_issue()

}

Input A

Kernel x = “B”
x = “A”

Thread BThread A

2. Predict faster by only considering adjacent uncovered blocks

If it is covered, the
control flow must

have diverged.

Kernel control flow
triggered by input A

Kernel control flow
triggered by input B

Schedule

(ordering edge)

Adjacent uncovered blocks

“Hey model:

please predict the coverage
of each block in this graph”

Input A

Kernel

x = “A”

…

if (x == “B”) {

handle_issue()

}

A tiny subset of all kernel code blocks

Snowcat encodes even more information in the graph

Kernel control flow
triggered by input A

Kernel control flow
triggered by input B

Schedule

(ordering edge)

Adjacent uncovered blocks

Possible data flows

Model architectureTraining dataset

Implementation of Snowcat

• Data

1.3M tests and their coverage

• Kernel version

Linux kernel 5.12

• Code block encoder

• Graph neural networks

1. Build the predictor using ML

2. Use the predictor for testing

Predictor integration

• PCT [ASPLOS’10]

• Razzer [SP’19]

• Snowboard [SOSP’21]

2 4 6 8 10 12

1000

2000

3000

4000

0

Testing Linux kernel 5.12

Snowcat
PCT

Snowcat improves testing efficiency significantly

Testing time in days

Number of
data races

~350 more data races

~6 days faster

Snowcat is effective in finding new bugs

Bug 17
Bug 1Bug 1Bug 1Bug 1

13 confirmed (6 fixed)

fs/, net/, drivers/, …

Data loss, DDos, …

New concurrency bugs

found in Linux kernel Existed for years (e.g, 10)

Concern about training cost

Collect data,

train model

Test

kernel

Linux kernel

5.12

Kernel

version Y

Test

kernel

Collect data,

train model

10 days

Can be reduced or

even skipped

Reuse the model for the new kernel

Collect data,

train model

Test

kernel

Linux kernel

5.12

Kernel

version Y

Test

kernel

Reuse the
model

10 days

The model is still effective on the new kernel

2

2000

Testing time in days

Number of
possible

data races

3 4 5 6 71

1000

3000

PCT
Snowcat (old model)

~1.5 days faster

Testing Linux kernel 5.13

Similar results found

when testing Linux kernel 6.1

Reuse the model for the new kernel

Collect data,

train model

Test

kernel

Linux kernel

5.12

Linux kernel

5.13

Test

kernel

Reuse the
model

10 days

The foundational model works well even on new kernels

Fine tune the model for the new kernel

Collect data,

train model

Test

kernel

Linux kernel

5.12

Linux kernel

5.13

Test

kernel

Fine tuning

Collect data,

train model

1 day

The fine-tuned model brings higher efficiency

10 days 3 days saved
out of 7

You’re welcome to read the paper

More details

• Test Linux 6.1

• Concurrency bug reproduction

• Existing framework integration

Key takeaway from Snowcat

Improve kernel concurrency testing using ML
Predict kernel coverage for concurrency tests

Efficient and effective https://github.com/

rssys/snowcat

https://github.com/

