Snowcat: Efficient Kernel Concurrency Testing
using a Learned Coverage Predictor

Sishuai Gong?, Dinglan Peng', Deniz AltinblUken2, Pedro Fonseca', Petros Maniatis?

Purdue University 2Google DeepMind

e PURDUE X ¢yciivs Google DeepMind

> vY.°.Y.%
50 00 X

YV

Finding kernel concurrency bugs is important

* Bugs that depend on the instruction schedules.
e Such bugs have serious impact.

m The Hacker News

Researchers Uncover New Linux Kernel 'StackRot' Privilege
Escalation Vulnerabillity

I’'m #root

Root cause: a kernel concurrency bug

Find kernel concurrency bugs through testing

Test Generation

Input (program) Ordering requirements
s = syscall_1{(...) Kernel Kernel
Input Input thread A thread B

syscall_2(s, ...)

Schedule ; @ %
o}
® §

Test Execution

Kernel

Prior work focuses on optimizing test generation

Snowboard [SOSP’21], 1= Test Generation
Razzer [SP’19], Krace [SP’20]

Find effective pairs of inputs
Input Input

Input Input
Schedule

Test Execution

Kernel

Redundant tests reduce the testing efficiency

Test Generation

Input Input

TOO many ‘ Schedule I
redundant tests

Test Test Test Execution
result result ‘ ernel |

@ Interesting tests

L Redundant tests

<7 Each execution is expensive

e 2.8 seconds per test
* 1M redundant tests waste 1 month of machine time

Identify and only execute interesting tests

Support any 1= Test Generation
generation techniques

Input Input

Schedule

Test Filtering
No

interesting?

Only interesting tests

Yes
Test Tost Test Test Execution
result result result Kernel
Interesting tests

Redundant tests

What are interesting tests?

Thread a Thread b

X — “A” X — “B”

if (x == “B”) {
handle_issue()

}

Coverage of different schedules

Schedule 1 Schedule 2
@ x=“B pn
en @ < ®
- . @ ¥ = “B”
Hx=="B91 fx=="B"{ @

handle_issue()
} }

Redundant test New code executed.
SOHNSEties Interesting!

handle_issue()

Snowcat predicts the kernel coverage for concurrency tests

Input Input

Schedule

Machine learning

Predictor Effective in predicting application coverage

Coverage

Challenges in using ML to build the predictor

1. How to encode
a concurrency test to the model?

* Inputs are userspace programs

* Schedule is kernel threads ordering

Input

Input

Schedule

Predictor

[Coverage /

2. How to predict much faster

than execute?

* Predicting a full kernel CFG takes ~3s.

e A concurrent execution takes ~2s.

1. Represent the schedule on two sequential control flows

Input A Input B

Profile kernel
sequential execution

Input A
Kernel
X ="A"
If .(X == “B”) {

handle_issue()

}

Kernel control flow Kernel control flow
triggered by input A triggered by input B

Schedule
(ordering edge)

Predict the coverage for
this concurrent execution

Schedule

Extract thread
ordering requirements

Thread A Thread B

Dx =B’
x=A@

2. Predict faster by only considering adjacent uncovered blocks

Input A
Kernel
X ="A”
If .(X == “B”) {

handle_issue()
Y
If it IS covered, the

control flow must
have diverged.

Kernel control flow Kernel control flow
triggered by input A triggered by input B

Schedule
(ordering edge)

Adjacent uncovered blocks

A tiny subset of all kernel code blocks

“Hey model:

;&/U please predict the coverage
of each block in this graph”

Snowcat encodes even more information in the graph

Kernel control flow Kernel control flow
triggered by input A triggered by input B
4

Schedule

(ordering edge)

< .Y
~ ° @ Possible data flows

Lo ~A

Adjacent uncovered blocks

Implementation of Showcat

1. Build the predictor using ML

Training dataset Model architecture
e Data e Code block encoder
1.3M tests and their coverage
. * Graph neural networks
* Kernel version

Linux kernel 5.12

2. Use the predictor for testing

Predictor integration

« PCT [ASPLOS’10]
 Razzer [SP’19]
 Snowboard [SOSP’21]

Snowcat improves testing efficiency significantly

Testing Linux kernel 5.12

4000 - |
~350 more data races
~6 days faster
3000 A
Number of 000 - J
data races
1000 S
Snowcat
PCT
| | | | | |
0
2 4 6 8 10 12

Testing time in days

Snowcat is effective in finding new bugs

13 confirmed (6 fixed)

fs/, net/, drivers/, ...

Data loss, DDos, ...

New concurrency bugs

found in Linux kernel Existed for years (e.g, 10)

Concern about training cost

Linux kernel Kernel
5.12 version Y
Collect data, Test Collect data, Test
train model kernel train model kernel

10 days é

Can be reduced or
even skipped

Reuse the model for the new kernel

Linux kernel Reuse the Kernel
5.12 model version Y
Collect data, Test Test
train model kernel kernel

10 days

The model iIs still effective on the new kernel

Number of
possible
data races

Testing LInux kernel 5.13

3000 -

2000 ~

1000 ~

Snowcat (old model)

PCT

~1.5 days faster
I

Similar results found
when testing Linux kernel 6.1

:

3 4 5
Testing time in days

Reuse the model for the new kernel

Linux kernel Reuse the Linux kernel
5.12 model 5.13
Collect data, Test Test
train model kernel kernel

10 days

The foundational model works well even on new kernels

Fine tune the model for the new kernel

Linux kernel
512 Fine tuning

Linux kernel

5.13

e

Collect data, Test
train model kernel

10 days

«?

Collect data,
train model

Test
kernel

3 days saved
out of 7

The fine-tuned model brings higher efficiency

You’re welcome to read the paper

More details

e Test Linux 6.1
\ » Concurrency bug reproduction

* Existing framework integration

Key takeaway from Snowcat

Improve kernel concurrency testing using ML
Predict kernel coverage for concurrency tests

Efficient and effective https://github.com/
rssys/snowcat

https://github.com/

